M1.(a) Enthalpy change when 1 mol of an (ionic) compound/lattice (under standard conditions)

Allow heat energy change

Is dissociated/broken/separated into its (component) ions

The ions being in the gaseous state (at infinite separation)
Mark independently. Ignore any conditions.
(b) There is an attractive force between the nucleus of an O atom and an external electron.

Allow any statement that implies attraction between the nucleus and an electron
(c) $\mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}(\mathrm{g})+2 \mathrm{e}^{-}$
lgnore lack of state symbols
Penalise incorrect state symbols
$\mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}^{-}(\mathrm{g})+\mathrm{e}^{-}$
$\mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}^{2-}(\mathrm{g})$

1

First new level for Mg^{2+} and O above last on L
If levels are not correct allow if steps are in correct order with arrows in the correct direction and correct ΔH values
Next level for Mg^{2+} and O^{-}below that
Next level for Mg^{2+} and O^{2-} above that and also above that for Mg^{2+} and O
Allow +124
Allow M4 with incorrect number of electrons
(d) LE MgO $=602+150+736+1450+248-142+844$
Note use of 124 instead of 248 CE=0
$=+3888 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Allow 1 for-3888
Allow no units
Penalise wrong units
(e) Forms a protective layer/barrier of $\mathrm{MgO} / \mathrm{MgO}$ prevents oxygen attacking Mg Allow activation energy is (very) high
Allow reaction (very) slow
(f) $\quad \Delta G=\Delta H-T \Delta S$
$\Delta S=\underline{(\Delta H-\Delta G)} \quad T$
$\Delta S=(-602-(-570)) \times 1000 / 298$

$$
\begin{aligned}
& =-107 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /-0.107 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \\
& \quad \text { If units not correct or missing, lose mark } \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

(g) 1 mol of solid and 0.5 mol of gas reactants form 1 mol solid products
Decrease in number of moles (of gas/species)
Allow gas converted into solid

System becomes more ordered
Allow consequential provided ΔS is -ve in 1(f)
If ΔS is +ve in $1(f)$ can only score M1

1
[16]

M2. (a) (i) (Enthalpy change for formation of) $1 \mathrm{~mol}\left(\mathrm{of}_{\mathrm{CaF}}^{2}\right.$) from its ions allow heat energy change do not allow energy or wrong formula for CaF_{2} penalise 1 mol of ions $C E=0$ if atoms or elements or molecules mentioned ignore conditions

1
ions in the gaseous state ions can be mentioned in M1 to score in M2 allow fluorine ions $\mathrm{Ca}^{2+}(g)+2 \mathrm{~F}^{-}(\mathrm{g}) \rightarrow \mathrm{CaF}_{2}$ scores M 1 and M 2
(ii) (enthalpy change when) 1 mol of gaseous (fluoride) ions (is converted) into aqueous ions / an aqueous solution allow $F^{-}(g) \rightarrow F^{-}(a q)$ (ignore $+a q$) do not penalise energy instead of enthalpy allow fluorine ions do not allow F^{-}ions surrounded by water
(b) water is polar / H on water is $\delta+/$ is electron deficient/ is unshielded penalise H^{+}on water 1 mark
(F - ions) attract water / $\delta+$ on $\mathrm{H} /$ hydrogen
allow H on water forms H -bonds with F allow fluorine ions
penalise co-ordinate bonds for M2
penalise attraction to O for M2
(c) $\Delta H=-(-2611)-1650+2 x-506$
ignore cycles
M1 is for numbers and signs correct in expression
1

$$
=-51\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

correct answer scores 2
ignore units even if incorrect

M3. (a) Enthalpy change for the formation of 1 mol of gaseous atoms allow heat energy change for enthalpy change

From the element (in its standard state)
ignore reference to conditions

Enthalpy change to separate 1 mol of an ionic lattice/solid/compound enthalpy change not required but penalise energy

Into (its component) gaseous ions mark all points independently
(b) $\quad \Delta H_{\mathrm{L}}=-\Delta H_{\mathrm{f}}+\Delta H_{\mathrm{a}}+$ I.E. $+1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})+\mathrm{EA}$

> Or correct Born-Haber cycle drawn out
$=+411+109+494+121-364$
$=+771\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
-771 scores $2 / 3$
+892 scores 1/3
-51 scores 1/3
-892 scores zero
+51 scores zero ignore units
(c) (i) lons are perfect spheres (or point charges)

Only electrostatic attraction/no covalent interaction mention of molecules/intermolecular forces/covalent bonds $C E=0$
allow ionic bonding only
If mention of atoms $C E=0$ for M2
(ii) Ionic

Allow no covalent character/bonding
(iii) Ionic with additional covalent bonding

Or has covalent character/partially covalent
Allow mention of polarisation of ions or description of polarisation

M4. (a) $\mathrm{CaF}_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{~F}^{-}(\mathrm{g})$
(b) (i) Enthalpy change for formation of 1 mol of substance

Allow heat energy change, NOT energy

From its elements

Reactants and products/all substances in their standard states Or normal states at $298 \mathrm{~K}, 1 \mathrm{bar}(100 \mathrm{kPa})$
(ii) $\mathrm{Ca}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})$
(iii) $\quad \Delta H_{1}\left(\mathrm{CaF}_{2}\right)=\Delta H_{\mathrm{a}}(\mathrm{Ca})+1$ st $\mathrm{IE}(\mathrm{Ca})+2^{\text {nd }} \mathrm{IE}(\mathrm{Ca})+\mathrm{BE}\left(\mathrm{F}_{2}\right)+$ $2 \times \mathrm{EA}(\mathrm{F})-\Delta H_{4}\left(\mathrm{CaF}_{2}\right)$

Or labelled diagram
$=193+590+1150+158+(2 \times-348)-2602$
$=-1207 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Correct answer scores 3
-842 scores 2 (transfer error)
-859 scores 1 only (using one E.A.)
Units not required, wrong units lose 1 mark
1
(c) Electrostatic attraction stronger/ionic bonding stronger/attraction between ions stronger/more energy to separate ions

Molecular attraction/atoms/intermolecular forces CE=0

Because fluoride (ion) smaller than chloride
Do not allow F or fluorine
(d) (i) $\Delta H=\Delta H_{L}+\Sigma \Delta H_{\text {nyd }}=2237-1650+(2 \times-364)$

Can be on cycle/diagram

$$
=-141 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Correct answer scores 2
Units not required, wrong units lose 1 mark
(ii) Decreases

If ans to (d)(i) positive allow increases

Reaction exothermic/ $\Delta \mathrm{H}$-ve
If (d) $(i)+$ ve allow endothermic/ $\Delta H+v e$
(Equilibrium) shifts to left/backwards (as temperature rises)/equilibrium
opposes the change
If (d) (i) +ve allow shifts to right/forwards/equilibrium opposes the change
If no answer to (d) (i) assume -ve ΔH used If effect deduced incorrectly from any $\triangle H C E=0$ for these 3 marks
(e) u.v. absorbed: electrons/they move to higher energy (levels)/electrons excited
visible light given out: electrons/they fall back down/move to lower energy (levels)

Must refer to absorbing u.v. NOT visible light or this must be implied.

