M1. (a)	<u>Enthal</u> cond	<u>by change</u> when <u>1 mol</u> of an (ionic) compound/lattice (under standard litions)
		Allow heat energy change 1
		Is dissociated/broken/separated into its (component) ions
		The ions being in the <u>gaseous</u> state (at infinite separation) <i>Mark independently. Ignore any conditions.</i> 1
	(b)	There is an <u>attractive</u> force between the <u>nucleus</u> of an O atom and an external <u>electron.</u> Allow any statement that implies attraction between the nucleus and an electron
	(c)	Mg²⁺(g) + O(g) + 2e⁻ Ignore lack of state symbols Penalise incorrect state symbols 1
		Mg²⁺(g) + O⁻(g) + e⁻ 1
		Mg²+(g) + O²-(g)
		First new level for Mg² and O above last on L If levels are not correct allow if steps are in correct order with arrows in the correct direction and correct ∆H values 1

Next level for Mg²⁺ and O⁻ below that

Next level for Mg²⁺ and O²⁻ above that and also above that for Mg²⁺ and O Allow +124 Allow M4 with incorrect number of electrons

(d) LE MgO = 602 + 150 + 736 + 1450 + 248 - 142 + 844 Note use of 124 instead of 248 CE=0

1

= +3888 kJ mol[₋]1 Allow 1 for –3888 Allow no units Penalise wrong units

Forms a protective layer/barrier of MgO / MgO prevents oxygen attacking Mg
 Allow activation energy is (very) high
 Allow reaction (very) slow

1

1

1

1

1

(f)
$$\Delta G = \Delta H - T \Delta S$$

 $\Delta S = (\Delta H - \Delta G)$ T

 $\Delta S = (-602 - (-570)) \times 1000/298$

 (g) 1 mol of solid and 0.5 mol of gas reactants form 1 mol solid products Decrease in number of moles (of gas/species) Allow gas converted into solid

System becomes more ordered Allow consequential provided ΔS is –ve in 1(f) If ΔS is +ve in 1(f) can only score M1

[16]

1

1

1

1

M2.

(a)

(i) (Enthalpy change for formation of) 1 mol (of CaF₂) from its ions allow heat energy change do not allow energy or wrong formula for CaF₂ penalise 1 mol of ions CE=0 if atoms or elements or molecules mentioned ignore conditions

ions in the gaseous state ions can be mentioned in M1 to score in M2 allow fluorine ions $Ca^{2*}(g) + 2F^{-}(g) \rightarrow CaF_{2}$ scores M1 and M2

 (ii) (enthalpy change when) 1 mol of gaseous (fluoride) ions (is converted) into aqueous ions / an aqueous solution allow F-(g) → F-(aq) (ignore + aq) do not penalise energy instead of enthalpy allow fluorine ions do not allow F- ions surrounded by water

1

1

(b) water is polar / H on water is δ^+ / is electron deficient / is unshielded

penalise H⁺ on water 1 mark

(F- ions) attract water / ^δ + on H / hydrogen allow H on water forms H-bonds with Fallow fluorine ions (c) $\Delta H = -(-2611) - 1650 + 2x - 506$ ignore cycles *M1* is for numbers and signs correct in expression

= -51 (kJ mol⁻¹) correct answer scores 2 ignore units even if incorrect 1

1

1

M3.		(a) <u>Enthalpy change</u> for the formation of <u>1 mol</u> of <u>gaseous atoms</u>	
		allow <u>heat energy change</u> for <u>enthalpy change</u>	
			1
		From the element (in its standard state)	
		ignore reference to conditions	
		J.	1
		Enthalov change to separate 1 mol of an ionic lattice/solid/compound	
		enthalov change not required but penalise energy	
		entrapy enalige net required but penalise energy	1
		Into (its component) <u>gaseous ions</u>	
		mark all points independently	1
			-
	(b)	$\Delta H_{\rm L} = -\Delta H_{\rm f} + \Delta H_{\rm a} + 1.E. + 1/2E(\rm CI-CI) + EA$	
		Or correct Born-Haber cycle drawn out	1
			1
		= +411 + 109 + 494 + 121 – 364	
			1
		= +771 (kJ mol-1)	
		-771 scores 2/3	
		+892 scores 1/3	

	–51 scores 1/3 –892 scores zero +51 scores zero ignore units	1
(i)	lons are perfect spheres (or point charges) <u>Only</u> electrostatic attraction/no covalent interaction <i>mention of molecules/intermolecular forces/covalent bonds</i> <i>CE</i> = 0	1
	allow ionic bonding <u>only</u> If mention of atoms CE = 0 for M2	1
(ii)	Ionic Allow no covalent character/bonding	1

(c)

(iii)	Ionic with additional covalent bonding
	Or has covalent character/partially covalent
	Allow mention of polarisation of ions or description of polarisation

[11]

1

M4.		(a)	$CaF_2(s) \rightarrow Ca^{2*}(g) + 2F(g)$	1
	(b)	(i)	Enthalpy change for formation of 1 mol of substance Allow <u>heat energy change</u> , NOT energy	1
			From its elements	1
			Reactants and products/all substances in their standard states Or normal states at 298 K, 1 bar (100 kPa)	1

	(iii)	$\Delta H_{t}(CaF_{2}) = \Delta H_{a}(Ca) + 1st IE(Ca) + 2^{nd} IE(Ca) + BE(F_{2}) + 2 \times EA(F) - \Delta H_{L}(CaF_{2})$ Or labelled diagram	1
		= 193 + 590 + 1150 + 158 + (2 × -348) - 2602	1
		 = -1207 kJ mol⁻¹ Correct answer scores 3 -842 scores 2 (transfer error) -859 scores 1 only (using one E.A.) Units not required, wrong units lose 1 mark 	1
(c)	Elec betw	ctrostatic attraction stronger/ionic bonding stronger/attraction veen ions stronger/more energy to separate ions Molecular attraction/atoms/intermolecular forces CE=0	1
	Beca	ause fluoride (ion) smaller than chloride Do not allow F or fluorine	1
(d)	(i)	Δ <i>H</i> = Δ <i>H</i> _L + ΣΔ <i>H</i> _{hyd} = 2237 – 1650 + (2 × –364) Can be on cycle/diagram = −141 kJ mol ⁻¹ Correct answer scores 2 Units not required, wrong units lose 1 mark	1
	(ii)	Decreases <i>If ans to (d)(i) positive allow increases</i> Reaction exothermic/ΔH –ve <i>If (d)(i) +ve allow endothermic/</i> ΔH + ve	1
		(Equilibrium) shifts to left/backwards (as temperature rises)/equilibrium	1

1

opposes the change If (d) (i) +ve allow shifts to right/forwards/equilibrium opposes the change If no answer to (d) (i) assume $-ve \Delta H$ used If effect deduced incorrectly from any $\Delta H CE = 0$ for these 3 marks

1

[17]

(e) u.v. absorbed: electrons/they move to higher energy (levels)/electrons excited
 1
 visible light given out: electrons/they fall back down/move to lower energy (levels)
 Must refer to absorbing u.v. NOT visible light or this must be implied.