M1.(a) Proton donor or H^{+}donor
Allow donator
(b) (i) BB

Both need to be correct to score the mark
(ii) AA

Both need to be correct to score the mark
(iii) BA

Both need to be correct to score the mark
(c) M1 $\left[\mathrm{H}^{+}\right]=10^{-1.25}$ OR 0.05623

M2 mol HCl $=\left(25 \times 10^{-3}\right) \times 0.0850\left(=2.125 \times 10^{-3}\right)$
Mark for Working

M3 vol $\left(=\frac{2.125 \times 10^{-3}}{0.05623}\right)=0.0378 \mathrm{dm}^{3}$ or $37.8 \mathrm{~cm}^{3}$ allow $0.0375-0.038 \mathrm{dm}^{3}$ or $37.5-38 \mathrm{~cm}^{3}$

Units and answer tied
Lose M3 if total given as $(25+37.8)=62.8 \mathrm{~cm}^{3}$
Ignore "vol added $=12.8 \mathrm{~cm}^{3}$ " after correct answer
(d) (i) 4.52
(ii) $\quad K_{a}=\frac{\left\lfloor\mathrm{H}^{+} \| \mathrm{H}^{-}\right]}{[\mathrm{HX}]}$ ignore $=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ but this may score M1 in (d)(iii) Must have all brackets but allow () Allow HA etc NO mark for $10^{\text {-рка }}$
(iii) M1 K K $=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ or with numbers

Allow $\left[H^{+}\right]=\sqrt{ }(K a \times[H A])$ for M1

M2 $\quad\left[\mathrm{H}^{+}\right]=\left(\sqrt{ }\left(3.01 \times 10^{-5} \times 0.174\right)=\sqrt{ }\left(5.24 \times 10^{-6}\right)\right)$
$=2.29 \times 10^{-3}-2.3 \times 10^{-3}$
Mark for answer

M3 $\mathrm{pH}=2.64 \quad$ (allow more than 2dp but not fewer)

Allow 1 for correct pH from their wrong [${ }^{+}$]

If square root forgotten, $\mathrm{pH}=5.28$ scores 2 for M 1 and M3
(e) $\quad \mathbf{M 1} \quad \mathrm{mol} \mathrm{OH}^{-}=\left(10.0 \times 10^{-3}\right) \times 0.125=1.25 \times 10^{-3}$

Mark for answer

M2 orig mol HX $=\left(15.0 \times 10^{-3}\right) \times 0.174=2.61 \times 10^{\times 3}$
Mark for answer

M3 mol HX in buffer $=$ orig $\mathrm{mol} \mathrm{HX}-\mathrm{mol} \mathrm{OH}^{-}$
Mark for answer
$=2.61 \times 10^{-3}-1.25 \times 10^{-3}=1.36 \times 10^{-3}$

Allow conseq on their (M2 - M1)

$$
\begin{aligned}
& \left([\mathrm{HX}]=1.36 \times 10^{-3} / 25 \times 10^{-3}=0.0544\right) \\
& \quad \text { If no subtraction, } \max 3 \text { for } M 1, M 2 \& M 4(p H=4.20) \\
& \quad \text { If }\left[H^{+}\right]=[X] \& \text { Vused, } \max 3 \text { for } M 1, M 2 \& M 3(p H=2.89)
\end{aligned}
$$

M4 mol X- in buffer $=\mathrm{mol} \mathrm{OH}^{-}=1.25 \times 10^{-3}$

$$
\left([\mathrm{X}]=1.25 \times 10^{-3} / 25 \times 10^{-3}=0.05\right)
$$

May be scored in M5 expression

M5 [$\left.\mathrm{H}^{+}\right]$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right] \quad\left(=\frac{\mathrm{Ka} \mathrm{\times}[\mathrm{HX}]}{\mathrm{X}-]}\right)} \\
& \text { If use } K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]} \text { no further marks } \\
& =\frac{3.01 \times 10^{-5} \times 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} \text { OR } \frac{3.01 \times 10^{-5} \times 0.0544}{0.05} \\
& \left(=3.27 \times 10^{-5}\right) \\
& \begin{array}{l}
\text { If either value of } \mathrm{HX} \text { or } X \text { - used wrongly or expression upside } \\
\text { down, no further marks }
\end{array}
\end{aligned}
$$

M6 $\mathrm{pH}=4.48$ or 4.49 (allow more than 2dp but not fewer)
Do not allow M6 for correct calculation of pH using their [H^{+}] - this only applies in (d)(iii) - apart from earlier AE
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}$
allow eq with or without \rightleftharpoons
allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$(plus can be on N or H or 3)
allow RHS as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{OH}$
(ii) Mark independently of (b)(i)

Allow
Ethylamine is only partly/slightly dissociated
OR
Ethylamine is only partly/slightly ionized
reaction/equilibrium lies to left or low [OH^{-}] $O \boldsymbol{O R}$ little OH^{-}formed
OR little ethylamine has reacted
Ignore "not fully dissociated" or "not fully ionized"
Ignore reference to ionisation or dissociation of water
(c) M1 Ethylamine

If wrong no marks in (c)

M2 alkyl group is electron releasing/donating
OR alkyl group has (positive) inductive effect

M3 increases electron density on $\mathrm{N}\left(\mathrm{H}_{2}\right)$
OR increased availability of $I \underline{p}$
OR increases ability of $\underline{\underline{p}}$ (to accept $\mathrm{H}(+)$)
Mark M3 is independent of M2
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$

Or any amine hydrochloride
allow name (ethylammonium chloride or ethylamine hydrochloride) or other halide for Cl
or a strong organic acid
NOT $\mathrm{NH}_{4} \mathrm{Cl}$
(e) Mark independently of (d)

Extra H^{+}reacts with ethylamine or OH^{-}
Or makes reference to Equilibrium (in (b)(i)) with amine on LHS

OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$
OR $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
Equilibrium shifts to RHS
OR ratio $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]$ remains almost constant
1

M3.(a) $\quad \mathrm{NH}_{4}^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$
Accept multiples.
Accept $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
Ignore state symbols, even if incorrect.

M5.C

