M1.(a) (i) $\quad\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] O R\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$ Ignore (aq) Must have [] not ()
(ii) $\sqrt{3.46} \times 10^{-14}\left(=1.86 \times 10^{-7}\right)$ If no square root, $C E=0$
(iii) $\left[\mathrm{H}^{+}\right]=10^{-11^{1.36}}\left(=4.365 \times 10^{-12}\right.$ OR $\left.4.37 \times 10^{-12}\right)$

Mark for working

$$
\begin{aligned}
K w= & {\left[4.365 \times 10^{-12} \text { OR } 4.37 \times 10^{-12} \times 0.047\right]=2.05 \times 10^{-13} } \\
& \text { Allow } 2.05 \times 10^{-13}-2.1 \times 10^{-13} \\
& \text { Mark for answer } \\
& \text { Ignore units }
\end{aligned}
$$

(b) (i) $\mathrm{HCOOH} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}^{+}$

Must have \rightleftharpoons but ignore brackets.
$\mathrm{OR} \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Allow HCO_{2}^{-}or CHOO^{-}ie minus must be on oxygen, so penalise COOH^{-}
(ii) $K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{\mathrm{HCOOH}}$ or $\frac{\left.\left.\mathrm{H}_{3}{ }^{-}\right] \mathrm{HCOO}^{-}\right]}{\mathrm{HCOOH}}$

Must have all brackets but allow ()
Must be HCOOH etc.
Allow ecf in formulae from (b)(i)
(iii) M1

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}\left(\left[\mathrm{H}^{+}\right]^{2}=1.78 \times 10^{-4} \times 0.056=9.97 \times 10^{-6}\right)
$$

Allow HA or HX etc.
Allow $\left[H^{+}\right]=\sqrt{ }(K a \times[H A])$ for M1

M2 $\quad\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-3}$
Mark for answer

M3 $\mathrm{pH}=2.50$ allow more than 2 dp but not fewer
Allow correct pH from their wrong [H^{+}] here only If square root shown but not taken, $\mathrm{pH}=5.00$ can score max 2 for M1 and M3
(iv) M1 Decrease Mark M1 independently

M2 Eqm shifts / moves to RHS OR more H^{+}OR K_{a} increases OR more dissociation

M3 To reduce temperature or oppose increase / change in temperature

Only award M3 following correct M2
(c)
(i) M 1
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Ka} \times[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}$
OR $\quad \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}$

If [HX]/[X] upside down, no marks

M2 $\frac{1.78 \times 10^{-4} \times 2.35 \times 10^{-2}}{1.84 \times 10^{-2}}$ OR $\mathrm{pH}=3.75-\log \frac{2.35 \times 10^{-2}}{1.84 \times 10^{-2}}$
$\left(=2.27 \times 10^{-4}\right)$

M3 $\mathrm{pH}=3.64$ allow more than 2 dp but not fewer pH calc NOT allowed from their wrong [H^{+}] here
(ii) M1 Mol H+ added $=5.00 \times 10^{-4}$

Mark on from AE in moles of HCl (eg 5×10^{-3} gives $\mathrm{pH}=$ 3.42 scores 3)

M3
$\left[\mathrm{H}^{+}\right]\left(=\frac{\mathrm{Kax}[\mathrm{XH}]}{\left[\mathrm{X}^{-}\right]}\right)=\frac{1.78 \times 10^{-4} \times 2.40 \times 10^{-2}}{1.79 \times 10^{-2}}\left(=2.39 \times 10^{-4}\right)$

If [HX]/[X] upside down here after correct expression in (c)(i), no further marks

$$
\text { OR } \mathrm{pH}=3.75-\log \frac{2.40 \times 10^{-2}}{1.79 \times 10^{-2}}
$$

If [HX]/[X] upside down here and is repeat error from (c)(i), max 3 ($\mathrm{pH}=3.88$ after 3.86 in (c)(i))

M2.(a) Proton donor or H^{+}donor
Allow donator
(b) (i) BB
(ii) A A

Both need to be correct to score the mark
1
(iii) BA

Both need to be correct to score the mark
(c) M1 $\quad\left[\mathrm{H}^{+}\right]=10^{-125}$ OR 0.05623

M2 $\mathrm{mol} \mathrm{HCl}=\left(25 \times 10^{-3}\right) \times 0.0850\left(=2.125 \times 10^{-3}\right)$ Mark for Working

M3 vol $\left(=\frac{2.125 \times 10^{-3}}{0.05623}\right)=0.0378 \mathrm{dm}^{3}$ or $37.8 \mathrm{~cm}^{3}$
allow $0.0375-0.038 \mathrm{dm}^{3}$ or $37.5-38 \mathrm{~cm}^{3}$
Units and answer tied
Lose M3 if total given as $(25+37.8)=62.8 \mathrm{~cm}^{3}$
Ignore "vol added $=12.8 \mathrm{~cm}^{3}$ " after correct answer
(d) (i) 4.52

Must be 2dp
1

1

1

M2 $\quad\left[\mathrm{H}^{+}\right]=\left(\sqrt{ }\left(3.01 \times 10^{-5} \times 0.174\right)=\sqrt{ }\left(5.24 \times 10^{-6}\right)\right)$ $=2.29 \times 10^{-3}-2.3 \times 10^{-3}$
Mark for answer

M3 $\quad \mathrm{pH}=2.64 \quad$ (allow more than 2dp but not fewer)
Allow 1 for correct pH from their wrong [$\mathrm{H} \cdot$]
If square root forgotten, $\mathrm{pH}=5.28$ scores 2 for M 1 and M3
(e) $\quad \mathbf{M} 1 \quad \mathrm{~mol} \mathrm{OH}^{-}=\left(10.0 \times 10^{-3}\right) \times 0.125=1.25 \times 10^{-3}$

Mark for answer

M2 orig mol HX=(15.0 $\left.\times 10^{-3}\right) \times 0.174=2.61 \times 10^{* 3}$ Mark for answer

M3 mol HX in buffer $=$ orig mol $\mathrm{HX}-\mathrm{mol} \mathrm{OH}^{-}$
Mark for answer
$=2.61 \times 10^{-3}-1.25 \times 10^{-3}=1.36 \times 10^{-3}$
Allow conseq on their (M2-M1)
$\left([H X]=1.36 \times 10^{-3} / 25 \times 10^{-3}=0.0544\right)$
If no subtraction, max 3 for M1, M2 \& M4 ($p H=4.20$)
If $\left[H^{+}\right]=[X-]$ \& Vused, $\max 3$ for M1, M2 \& M3 $(\mathrm{pH}=2.89)$

M4 mol X- in buffer $=\mathrm{mol} \mathrm{OH}^{-}=1.25 \times 10^{-3}$
$\left([X]=1.25 \times 10^{-3} / 25 \times 10^{-3}=0.05\right)$
May be scored in M5 expression

1

M5 $\quad\left[\mathrm{H}^{+}\right]$
$\left(=\frac{\mathrm{Kax}[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}\right)$
If use $K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ no further marks

$$
=\frac{3.01 \times 10^{-5} \times 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} \text { OR } \frac{3.01 \times 10^{-5} \times 0.0544}{0.05}
$$

$\left(=3.27 \times 10^{-5}\right)$
If either value of HX or X - used wrongly or expression upside down, no further marks

M6 $\mathrm{pH}=4.48$ or 4.49 (allow more than 2dp but not fewer)
Do not allow M6 for correct calculation of pH using their [$\left.\mathrm{H}^{+}\right]$ - this only applies in (d)(iii) - apart from earlier AE

M3. (a) (i) addition of small amounts of acid send eqm to left or extra H^{+} removed by reaction with HCO_{3}^{-}
ratio $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] /\left[\mathrm{HCO}_{3}^{-}\right]$remains constant hence $\left[\mathrm{H}^{+}\right]$and pH remain const
(ii) $\mathrm{pH}=7.41 \therefore\left[\mathrm{H}^{+}\right]=3.89 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
$=\frac{\frac{\left(3.89 \times 10^{-8}\right)\left(2.5 \times 10^{-2}\right)}{1.25 \times 10^{-2}}=7.78 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}}{\quad \text { allow error carried forward mark. Do not penalise twice. }}$
(b) (i) moles H^{+}added $=10 \times 10^{-3} \times 1.0=0.01$
(ii) moles ethanoic acid after addition $=0.15+0.01=0.16$
moles ethanoate ions after addition $=0.10-0.01=0.09$
(iii) $\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$
$=1.74 \times 10^{-5} \times \frac{0.16 / \mathrm{V}}{0.09 \mathrm{~N}}$
$\mathrm{pH}=4.51$

M4.(a) Proton acceptor
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}$
allow eq with or without \rightleftharpoons
allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$(plus can be on N or H or 3) allow RHS as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{OH}$
(ii) Mark independently of (b)(i)

Allow
Ethylamine is only partly/slightly dissociated
OR
Ethylamine is only partly/slightly ionized
reaction/equilibrium lies to left or low [OH^{-}] O R little OH^{-}formed
OR little ethylamine has reacted
Ignore "not fully dissociated" or "not fully ionized"
Ignore reference to ionisation or dissociation of water
1

1
(c) M1 Ethylamine

If wrong no marks in (c)

M2 alkyl group is electron releasing/donating OR alkyl group has (positive) inductive effect

M3 increases electron density on $\mathrm{N}\left(\mathrm{H}_{2}\right)$
$O R$ increased availability of $\underline{\underline{p}}$ $O R$ increases ability of $\underline{\underline{p}}$ (to accept $\mathrm{H}(+)$)
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$
Or any amine hydrochloride
allow name (ethylammonium chloride or ethylamine hydrochloride) or other halide for Cl
or a strong organic acid
NOT $\mathrm{NH}_{4} \mathrm{Cl}$
(e) Mark independently of (d)

Extra H^{+}reacts with ethylamine or OH^{-}
Or makes reference to Equilibrium (in (b)(i)) with amine on LHS

OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$
OR $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
Equilibrium shifts to RHS
OR ratio $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]$ remains almost constant

