(ii)
$$\sqrt{3.46 \times 10^{-14}} (= 1.86 \times 10^{-7})$$

If no square root, CE=0

1

1

1

1

1

(iii) $[H^+] = 10^{-11.36} (= 4.365 \times 10^{-12} \text{ OR } 4.37 \times 10^{-12})$ Mark for working

$$Kw = [4.365 \times 10^{-12} \text{ } OR 4.37 \times 10^{-12} \times 0.047] = 2.05 \times 10^{-13}$$

Allow 2.05 × 10⁻¹³ - 2.1 × 10⁻¹³
Mark for answer
Ignore units

(b) (i) HCOOH → HCOO⁻ + H⁺ Must have → but ignore brackets.

OR HCOOH + H_2O \longrightarrow HCOO⁻ + H_3O^+ Allow HCO₂⁻ or CHOO⁻ ie minus must be on oxygen, so penalise COOH⁻

(ii)
$$K_{\alpha} = \frac{\left[H^{+}\right]\left[HCOO^{-}\right]}{HCOOH} OR \frac{\left[H_{3}O^{+}\right]\left[HCOO^{-}\right]}{HCOOH}$$

Must have all brackets but allow () Must be HCOOH etc. Allow ecf in formulae from (b)(i)

(iii) M1

$$K_{\alpha} = \frac{\left[H^{+}\right]^{2}}{\left[HCOOH\right]} \left(\left[H^{+}\right]^{2} = 1.78 \times 10^{-4} \times 0.056 = 9.97 \times 10^{-6}\right)$$

Allow HA or HX etc. Allow $[H^+] = \sqrt{(Ka \times [HA])}$ for M1

M2 $[H^+] = 3.16 \times 10^{-3}$ Mark for answer

1

1

1

1

1

1

- M3 pH = 2.50 allow more than 2 dp but not fewer **Allow correct pH from their wrong** [H⁺] **here only** If square root shown but not taken, pH = 5.00 can score max 2 for M1 and M3
- (iv) M1 Decrease Mark M1 independently

M2 Eqm <u>shifts / moves</u> to RHS **OR** more H^+ **OR** K_a increases **OR** more dissociation

M3 To reduce temperature or oppose increase / change in temperature

Only award M3 following correct M2

Page 3

1

(c) (i) M1
$$[H^+] = \frac{Ka \times [HX]}{[X^-]}$$
 OR $pH = pK_a - \log \frac{[HX]}{[X^-]}$

M2
$$\frac{1.78 \times 10^{-4} \times 2.35 \times 10^{-2}}{1.84 \times 10^{-2}} \text{ OR } \text{pH} = 3.75 - \log \frac{2.35 \times 10^{-2}}{1.84 \times 10^{-2}}$$
$$(= 2.27 \times 10^{-4})$$

1

1

1

1

1

(ii) M1 Mol H⁺ added =
$$5.00 \times 10^{-4}$$

Mark on from AE in moles of HCl (eg 5×10^{-3} gives pH = 3.42 scores 3)

M2 Mol HCOOH = 2.40×10^{-2} and Mol HCOO⁻ = 1.79×10^{-2} If either wrong no further marks except AE (-1) OR if ECF in mol acid and / or mol salt from (c)(i), can score all 4

M3

$$[H^{+}] \left(=\frac{Ka \times [XH]}{[X^{-}]}\right) = \frac{1.78 \times 10^{-4} \times 2.40 \times 10^{-2}}{1.79 \times 10^{-2}} \left(=2.39 \times 10^{-4}\right)$$

If [HX]/[X⁻] upside down here after correct expression in (c)(i), no further marks

OR pH = 3.75 -
$$\log \frac{2.40 \times 10^{-2}}{1.79 \times 10^{-2}}$$

If [HX]/[X] upside down here and is repeat error from (c)(i), max 3 (pH = 3.88 after 3.86 in (c)(i))

			M4	pH = 3.62 allow more than 2 dp but not fewer <i>pH calc NOT allowed from their wrong [H⁺] here</i>		1 [20]
M2. (a)	Protor	ו donc	or or H	donor Allow donator	1	
	(b)	(i)	ΒB	Both need to be correct to score the mark	1	
		(ii)	ΑA	Both need to be correct to score the mark	1	
		(iii)	ΒA	Both need to be correct to score the mark	1	
	(c)	M 1	[H⁺] :	= 10 ^{-1.25} OR 0.05623	1	
		M2	mol I	HCI = (25 × 10 ⁻ ³) × 0.0850 (= 2.125 × 10 ⁻ ³) Mark for Working	1	
		М3	vol	$\left(=\frac{2.125\times10^{-3}}{0.05623}\right) = 0.0378 \mathrm{dm^3 or} 37.8 \mathrm{cm^3}$		

1

(d) (i) 4.52 *Must be 2dp*

1

1

1

1

1

(ii)
$$K_a = \frac{H^+ H^-}{H^-}$$
 ignore H^+^2 but this may score M1 in (d)(iii)
Must have all brackets but allow () Allow HA etc
NO mark for 10^{-pKa}

(iii) **M1** $K_a = \frac{[H^+]^2}{[HX]}$ or with numbers Allow $[H^+] = \sqrt{(Ka \times [HA])}$ for M1

> **M2** $[H^+] = (\sqrt{(3.01 \times 10^{-5} \times 0.174)} = \sqrt{(5.24 \times 10^{-6})})$ = 2.29 ×10⁻³ - 2.3 ×10⁻³ *Mark for <u>answer</u>*

M3pH = 2.64(allow more than 2dp but not fewer)Allow 1 for correct pH from their wrong [H*]If square root forgotten, pH = 5.28 scores 2 for M1 and M3

1

1

(e) **M1** mol OH⁻ = $(10.0 \times 10^{-3}) \times 0.125 = 1.25 \times 10^{-3}$ Mark for answer **M2** orig mol HX = $(15.0 \times 10^{-3}) \times 0.174 = 2.61 \times 10^{+3}$ Mark for answer

M3 mol HX in buffer = orig mol HX – mol OH-Mark for answer

$$= 2.61 \times 10^{-3} - 1.25 \times 10^{-3} = 1.36 \times 10^{-3}$$

Allow conseq on their (M2 – M1)

M4 mol X⁻ in buffer = mol OH⁻ = 1.25×10^{-3}

/ Ka×[HX].

1

1

1

[18]

1

M5 [H·]
$$(= (K^{-})^{-1})^{(H^{+})^{2}}$$

If use $K_{a} = (H^{+})^{2}$ no further marks

$$= \frac{3.01 \times 10^{-5} \times 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} R \frac{3.01 \times 10^{-5} \times 0.0544}{0.05}$$
(= 3.27 × 10⁻⁵)
If either value of HX or X- used wrongly or expression upside

down, no further marks

M6 pH = 4.48 or 4.49 (allow more than 2dp but not fewer) Do **not** allow M6 for correct calculation of pH using their [H⁺] - this only applies in (d)(iii) - apart from earlier AE 1

M3. (a) addition of small amounts of acid send eqm to left or extra H⁺ (i) removed by reaction with HCO3-1 ratio [H₂CO₃]/[HCO₃-] remains constant hence [H⁺] and pH remain const 1 (ii) pH = 7.41 ∴ [H⁺] = 3.89 × 10⁻³ mol dm⁻³ 1 $\kappa_{a} = \frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]}$ 1 $\frac{(3.89 \times 10^{-8}\,)(2.5 \times 10^{-2}\,)}{1.25 \times 10^{-2}}$ = = 7.78 × 10⁻⁸ mol dm⁻³ allow error carried forward mark. Do not penalise twice. 1 (b) (i) moles H⁺ added = $10 \times 10^{-3} \times 1.0 = 0.01$ 1 moles ethanoic acid after addition = 0.15 + 0.01 = 0.16(ii)

moles ethanoate ions after addition = 0.10 - 0.01 = 0.09

(iii)
$$[H^+] = \frac{K_a[CH_3COOH]}{[CH_3COO^-]}$$

= 1.74 × 10⁻⁵ × $\frac{0.16/V}{0.09/V}$
pH = 4.51

[11]

M4.(a) Proton acceptor

(b) (i) $CH_3CH_2NH_2 + H_2O \rightarrow CH_3CH_2NH_3^+ + OH^$ allow eq with or without \Longrightarrow allow $C_2H_3NH_2$ and $C_2H_5NH_3^+$ (plus can be on N or H or 3) allow RHS as $C_2H_3NH_3OH$

(ii) Mark independently of (b)(i)
 Allow
 Ethylamine is only partly/slightly dissociated
 OR
 Ethylamine is only partly/slightly ionized

reaction/equilibrium lies to left or low [OH-] OR little OH- formed

OR little ethylamine has reacted Ignore "not fully dissociated" or "not fully ionized" Ignore reference to ionisation or dissociation of water

(c) **M1** Ethylamine

If wrong no marks in (c)

M2 alkyl group is electron releasing/donating

OR alkyl group has (positive) inductive effect

1

1

1

1

1

M3 increases electron density <u>on $N(H_2)$ </u>

OR increased availability of lp

OR increases ability of <u>lp</u> (to accept H(+))

(d) $CH_3CH_2NH_3CI$

Or any amine hydrochloride

allow name (ethylammonium chloride or ethylamine hydrochloride) or other halide for Cl

or a strong **organic** acid **NOT** NH4CI

1

1

1

1

(e) Mark independently of (d)

Extra H⁺ reacts with ethylamine or OH⁻ Or makes reference to Equilibrium (in (b)(i)) with amine on LHS

- $\textit{OR} \quad CH_{\scriptscriptstyle 3}CH_{\scriptscriptstyle 2}NH_{\scriptscriptstyle 2} \ \ + \ \ H^{\scriptscriptstyle +} \ \longrightarrow \ \ CH_{\scriptscriptstyle 3}CH_{\scriptscriptstyle 2}NH_{\scriptscriptstyle 3}{}^{\scriptscriptstyle +}$
- OR H⁺ + OH⁻ \rightarrow H₂O

Equilibrium shifts to RHS

OR ratio [CH₃CH₂NH₃⁺]/[CH₃CH₂NH₂] remains almost constant