M1.(a) (i) $2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Or multiples
(ii) to speed up the reaction

OR

(provide a) catalyst or catalyses the reaction or biological catalyst OR release / contain / provides an enzyme

Ignore "fermentation"
Ignore "to break down the glucose"
Not simply "enzyme" on its own
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O}$

Any correct representation for the two organic structures. Brackets not essential.
Not "sticks" for the structures in this case
(ii) Secondary (alcohol) OR 2° (alcohol)
(c) M1 $\quad \mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

OR $\quad \mathrm{q}=150 \times 4.18 \times 8.0$
Award full marks for correct answer
In M1, do not penalise incorrect cases in the formula
M2 $=(\pm) 5016(\mathrm{~J})$ OR $5.016(\mathrm{~kJ}) \mathbf{O R} 5.02(\mathrm{~kJ})$
(also scores M1)
M3 This mark is for dividing correctly the number of kJ by the number of moles and arriving at a final answer in the range shown.
Using 0.00450 mol
therefore $\Delta \mathrm{H}=-1115\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$O R-1114.6$ to $-1120\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Range (+)1114.6 to (+)1120 gains $\mathbf{2}$ marks
BUT - $\mathbf{1 1 1 0}$ gains $\mathbf{3}$ marks and +1110 gains $\mathbf{2}$ marks

AND - 1100 gains $\mathbf{3}$ marks and +1100 gains $\mathbf{2}$ marks
Award full marks for correct answer
In M1, do not penalise incorrect cases in the formula
Penalise M3 ONLY if correct numerical answer but sign is incorrect; (+)1114.6 to (+)1120 gains 2 marks
Penalise M2 for arithmetic error and mark on If $\Delta T=281$; score $q=m$ c ΔT only If $c=4.81$ (leads to 5772) penalise M2 ONLY and mark on for M3 = - 1283
Ignore incorrect units in M2
If units are given in M3 they must be either $\mathrm{kJ} \mathrm{or} \mathrm{kJ} \mathrm{mol}^{-1}$ in this case
(d) M1 The enthalpy change / heat change at constant pressure when

1 mol of a compound / substance / element
M2 is burned / combusts / reacts completely in oxygen OR burned / combusted / reacted in excess oxygen

M3 with (all) reactants and products / (all) substances in standard / specified states

OR
(all) reactants and products /(all) substances in normal states under standard conditions / $100 \mathrm{kPa} / 1 \mathrm{bar}$ and specified T / 298 K

For M3
Ignore reference to 1 atmosphere
(e) M1
$\sum \mathrm{B}$ (reactants) $-\sum \mathrm{B}$ (products) $=\Delta H$ OR
Sum of bonds broken - Sum of bonds formed $=\Delta H$ OR
$2 \mathrm{~B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}=\mathrm{O})+6 \mathrm{~B}(\mathrm{C}-\mathrm{H})+4 \mathrm{~B}(\mathrm{O}=\mathrm{O})(\mathrm{LHS})$
$-6 B(C=O)-6 B(O-H)(R H S)=\underline{\Delta H}$
M2 (also scores M1)
$2(348)+805+6(412)+4(496)$ [LHS $=5957]$
(696) (2472) (1984)
$-6(805)-6(463)[R H S=(-) 7608]=\Delta H$
(4830) (2778)

OR using only bonds broken and formed (5152-6803)
M3
$\Delta H=-1651\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

Candidates may use a cycle and gain full marks.

Correct answer gains full marks
Credit 1 mark for (+) 1651 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication / addition error; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with $4 \mathrm{O}_{2}, 3 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ OR a clear statement of M1 which could be in words and scores only M1
Allow a maximum of one mark if the only scoring point is LHS = 5957 (or 5152) OR RHS $=7608$ (or 6803)
Award 1 mark for + 1651

Smaller increase in T above room temperature Or increased contact between calorimeter and water Or smaller heat loss by evaporation / from the surface

M3.(a) $\quad \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}+8 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
(b) Temperature rise $=20.1$
$q=50.0 \times 4.18 \times 20.1=4201(\mathrm{~J})$

Mass of alcohol burned $=0.54 \mathrm{~g}$ and M_{r} alcohol $=100.0$
$\therefore \mathrm{mol}$ of alcohol $=n=0.54 / 100=0.0054$

Heat change per mole $=q / 1000 n$ OR q / n
$=778 \mathrm{~kJ} \mathrm{~mol}^{-1}$ OR $778000 \mathrm{~J} \mathrm{~mol}^{-1}$
$\Delta H=-778 \mathrm{~kJ} \mathrm{~mol}^{-1}$ OR -778 $000 \mathrm{~J} \mathrm{~mol}^{-1}$
M4 is for answer with negative sign for exothermic reaction
Units are tied to the final answer and must match
(c) Less negative than the reference

Heat loss OR incomplete combustion OR evaporation of alcohol OR heat transferred to beaker not taken into account
(d) Water has a known density (of $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$)

M4.(a)
$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \quad+2 \mathrm{CO}_{2}$ $\left(2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$

Penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for ethanol in M1.
M2 and M3
Mark M2 and M3 independently.
Any two conditions in any order for M2 and M3 from

- (enzymes from) yeast or zymase
- $\quad 25^{\circ} \mathrm{C} \leq \mathrm{T} \leq 42{ }^{\circ} \mathrm{C} \quad$ OR $\quad 298 \mathrm{~K} \leq \mathrm{T} \leq 315 \mathrm{~K}$
- anaerobic / no oxygen / no air OR neutral pH

A lack of oxygen can mean either without oxygen or not having enough oxygen and does not ensure no oxygen, therefore only credit "lack of oxygen" if it is qualified.
Penalise 'bacteria', 'phosphoric acid', ‘high pressure' using the list principle.

M4 (fractional) distillation or GLC
Ignore reference to 'aqueous' or 'water' (ie not part of the list principle).

M5 Carbon-neutral in this context means
There is no net / overall (annual) carbon dioxide / CO_{2} emission to the atmosphere

OR
There is no change in the total amount / level of carbon dioxide / CO_{2} present_ in the atmosphere

For M5 - must be about CO_{2} and the atmosphere.
The idea that the carbon dioxide $/ \mathrm{CO}_{2}$ given out equals the carbon dioxide $/ \mathrm{CO}_{2}$ that was taken in from the atmosphere.
(b) $\quad \mathbf{M 1 q}=\mathrm{mc} \Delta \mathrm{T}$ (this mark for correct mathematical formula)

Full marks for M1, M2 and M3 for the correct answer.
In M1, do not penalise incorrect cases in the formula.
$\mathbf{M 2}=(75 \times 4.18 \times 5.5)$
1724 (J) OR 1.724 (kJ) OR 1.72 (kJ) OR 1.7 (kJ)
(also scores M1)
Ignore incorrect units in M2.
M3 Using 0.0024 mol
therefore $\Delta \mathrm{H}=\underline{-718}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(Accept a range from -708 to -719 but do not penalise more than 3 significant figures)

Penalise M3 ONLY if correct numerical answer but sign is incorrect. Therefore +718 gains two marks.
If units are quoted in M3 they must be correct.
If $\Delta T=278.5, C E$ for the calculation and penalise M2 and
M3.
M4 and M5 in any order
Any two from

- incomplete combustion
- heat loss
- heat capacity of Cu not included
- some ethanol lost by evaporation
- not all of the $\left(2.40 \times 10^{-3} \mathrm{~mol}\right)$ ethanol is burned / reaction is incomplete If $c=4.81$ (leads to 1984) penalise M2 ONLY and mark on for M3 $=-827$
(c) (i) M1 enthalpy / heat / energy change (at constant pressure) or enthalpy / heat / energy needed in breaking / dissociating (a) covalent bond(s) Ignore bond making.

M2 averaged for that type of bond over different / a range of molecules /

compounds

Ignore reference to moles.
(ii) M1
$\sum \mathrm{B}($ reactants $)-\sum \mathrm{B}($ products $)=\Delta H$

OR

Sum of bonds broken $-\underline{\text { Sum }}$ of bonds formed $=\underline{\Delta H}$

OR

$\mathrm{B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}-\mathrm{O})+\mathrm{B}(\mathrm{O}-\mathrm{H})+5 \mathrm{~B}(\mathrm{C}-\mathrm{H})+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})$
$-4 \mathrm{~B}(\mathrm{C}=\mathrm{O})-6 \mathrm{~B}(\mathrm{O}-\mathrm{H})=\Delta H=-1279$
Correct answer gains full marks.
Credit 1 mark for - 496 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2).
If no $A E$, check for a correct method; this requires either a correct cycle with $2 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ OR a clear statement of M1 which could be in words and scores only M1.

M2 (also scores M1)
$348+360+463+5(412)+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})$
(3231) (or 2768 if O-H cancelled)
$-4(805)-6(463)=\Delta H=-1279$
(5998) (or 5535 if $\mathrm{O}-\mathrm{H}$ cancelled)
$3 \mathrm{~B}(\mathrm{O}=\mathrm{O})=1488\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Credit a maximum of one mark if the only scoring point is bonds formed adds up to 5998 (or 5535) OR bonds broken includes the calculated value of 3231 (or 2768).

M3
$\mathrm{B}(\mathrm{O}=\mathrm{O})=\underline{496}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Award 1 mark for -496
Students may use a cycle and gain full marks

M5.(a) Start a clock when KCl is added to water

Record the temperature every subsequent minute for about 5 minutes
Allow record the temperature at regular time intervals untilsome time after all the solid has dissolved for M2

Plot a graph of temperature vs time

Extrapolate back to time of mixing $=0$ and determine the temperature
(b) Heat taken in $=m \times c \times \Delta T=50 \times 4.18 \times 5.4=1128.6 \mathrm{~J}$

Max 2 if $14.6^{\circ} \mathrm{C}$ used as ΔT

Moles of $\mathrm{KCl}=5.00 / 74.6=0.0670$

Enthalpy change per mole $=+1128.6 / 0.0670=16839 \mathrm{~J} \mathrm{~mol}^{-1}$
$=+16.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(c) $\Delta H_{\text {solution }}=\Delta H_{\text {atitice }}+\Delta \mathrm{H}$ (hydration of calcium ions) $+2 \times \Delta \mathrm{H}$ (hydration of chloride ions)
$\Delta H_{\text {atitice }}=\Delta H_{\text {solution }}-\Delta H($ hydration of calcium ions $)-2 \times \Delta \mathrm{H}$ (hydration of chloride ions)

$$
\Delta H_{\text {latice }}=-82-9-(-1650+2 \times-364)=+2295\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

(d) Magnesium ion is smaller than the calcium ion

Therefore, it attracts the chloride ion more strongly / stronger ionic bonding

