$$
\begin{aligned}
& \text { M1.(a) } \quad(\mathrm{Q}=\mathrm{mc} \mathrm{\Delta T}) \\
&= 50 \times 4.18 \times 27.3 \\
& \quad \text { If incorrect }(\text { eg mass }=0.22 \text { or } 50.22 \mathrm{~g}) \quad C E=0 / 2
\end{aligned}
$$

$=5706 \mathrm{~J}$ (accept 5700 and 5710)
Accept 5.7 kJ with correct unit. Ignore sign.
(b) $\quad M_{\mathrm{r}}$ of 2-methylpropan-2-ol $=74(.0)$

For incorrect M_{r}, lose M1 but mark on.

$$
\begin{aligned}
\text { Moles } & =\text { mass } / M_{r} \\
& =0.22 / 74(.0) \\
& =0.00297 \text { moles }
\end{aligned}
$$

$\Delta H=-5706 /(0.002970 \times 1000)$
$=-1921\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
If 0.22 is used in part (a), answer $=-8.45 \mathrm{~kJ} \mathrm{~mol}^{-1}$ scores 3
(Allow -1920, -1919)
If uses the value given (5580 J), answer $=-1879 \mathrm{~kJ} \mathrm{~mol}^{-1}$ scores 3
Answer without working scores M3 only.
Do not penalise precision.
Lack of negative sign loses M3
$\Delta H=-(-360)+(4 \times-393)+(5 \times-286)$ M2 also implies M1 scored.
$\Delta H=\mathbf{- 2 6 4 2}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ This answer only.
Allow 1 mark out of 3 for correct value with incorrect sign.
(d) $\quad(-2422-\operatorname{part}(\mathrm{b})) \times 100 /-2422$

Ignore negative sign.
Expect answers in region of 20.7
If error carried forward, 0.22 allow 99.7
If 5580 J used earlier, then allow 22.4
(e) Reduce the distance between the flame and the beaker / put a sleeve around the flame to protect from drafts / add a lid / use a copper calorimeter rather than a pyrex beaker / use a food calorimeter

Any reference to insulating material around the beaker must be on top.
Accept calibrate the equipment using an alcohol of known enthalpy of combustion.

M2.(a) The enthalpy change / heat (energy) change (at constant pressure) in a reaction is independent of the route / path taken (and depends only on the initial and final states)

Ignore the use of ΔH for enthalpy
(b) $\Delta H_{\mathrm{xpp}}+\Delta H_{2}-\Delta H_{1}=0$

OR
$\Delta H_{\text {exp }}+\Delta H_{2}=\Delta H_{1}$ OR $\Delta H_{1}=\Delta H_{\text {exp }}+\Delta H_{2}$
OR

$$
\Delta H_{e x p}=\Delta H_{1}-\Delta H_{2} O R \Delta H_{e x p}=\Delta H_{1}+\left(-\Delta H_{2}\right)
$$

(c) $\Delta H_{\text {exp }}=\Delta H_{1}-\Delta H_{2}$
$\Delta H_{\text {exp }}=-156-12=-168\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Ignore units
Award the mark for the correct answer without any working
(d) (i) $\mathrm{M} 1 \mathrm{q}=\mathrm{m} \mathrm{c} \Delta \mathrm{T}$ OR calculation $(25.0 \times 4.18 \times 14.0)$

Award full marks for correct answer
M2 = 1463J OR 1.46 kJ (This also scores M1)
In M1, do not penalise incorrect cases in the formula
M3 must have both the correct value within the range specified and the minus sign

Penalise M3 ONLY if correct numerical value but sign is incorrect; e.g. +69.5 to +69.7 gains $\mathbf{2}$ marks (ignore +70 after correct answer)

For 0.0210 mol , therefore
$\Delta H_{1}=\mathbf{- 6 9 . 6 7}$ to $\mathbf{- 6 9 . 5 2 (\mathrm { kJ } \mathrm { mol } ^ { - 1 })}$
OR $\Delta H_{1}=\mathbf{- 6 9 . 7}$ to - $69.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Penalise M2 for arithmetic error but mark on
Accept answers to 3 sf or 4 sf in the range - 69.7 to - 69.5
$\Delta T=287$, score $q=m c \Delta T$ only
Ignore -70 after correct answer
If $c=4.81$ (leads to 1684J) penalise M2 ONLY and mark on
for M3 $=-80.17$ (range -80.0 to -80.2)
Ignore incorrect units
(ii) The idea of heat loss

NOT impurity

OR

Incomplete reaction (of the copper sulfate)
NOT incompetence
OR
Not all the copper sulfate has dissolved
NOT incomplete combustion
(e) Impossible to add / react the exact / precise amount of water Not just "the reaction is incomplete" OR

Very difficult to measure the temperature rise of a solid
OR
Difficult to prevent solid dissolving
OR
(Copper sulfate) solution will form

M3. (a) (i) M1 (could be scored by a correct mathematical expression which_ must have
all ΔH symbols and the \sum or SUM)
M1 $\quad \underline{\Delta H_{t}}=\Sigma \Delta H_{f}$ (products) $-\Sigma \Delta H_{f}$ (reactants)
OR a correct cycle of balanced equations with $1 \mathrm{C}, 3 \mathrm{H}_{2}$ and $1 \mathrm{O}_{2}$
M2 $\quad \Delta H_{t}=-201+(-242)-(-394)$
$\Delta H_{t}=-201-242+394$
$\Delta H_{t}=-443+394$
(This also scores M1)
M3 $=-49\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(Award 1 mark ONLY for + 49)
Correct answer gains full marks
Credit 1 mark ONLY for + 49 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
For other incorrect or incomplete answers, proceed as
follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no $A E$, check for a correct method; this requires either correct cycle of balanced equations with $1 \mathrm{C}, 3 \mathrm{H}_{2}$ and $1 \mathrm{O}_{2}$ OR a clear statement of M1 which could be in words and scores only M1
(ii) It is an element / elemental

Ignore reference to "standard state"

OR

By definition
(b) M1 (The yield) increases / goes up / gets more

If M1 is given as "decreases"/ "no effect" / "no change" then CE $=0$ for clip, but mark on only M2 and M3 from a blank M1

M2 There are more moles / molecules (of gas) on the left / of reactants
$O R$ fewer moles / molecules (of gas) on the right
/ products
OR there are 4 moles /molecules (of gas) on the left and 2 moles / molecules on the right.
OR (equilibrium) shifts / moves to the side with less moles / molecules Ignore "volumes", "particles" "atoms" and "species" for M2

M3: Can only score M3 if M2 is correct

The (position of) equilibrium shifts / moves (from left to right) to oppose the increase in pressure

For M3, not simply "to oppose the change"
For M3 credit the equilibrium shifts / moves (to right) to lower /decrease the pressure
(There must be a specific reference to the change that is opposed)
(c) M1 Yield increases goes up

M2 The (forward) reaction / to the right is endothermic OR takes in/ absorbs

OR

The reverse reaction / to the left is exothermic OR gives out / releases heat If M1 is given as "decrease" / "no effect"/ "no change" then CE= 0 for clip, but mark on only M2 and M3 from a blank M1

Can only score M3 if M2 is correct

M3 The (position of) equilibrium shifts / moves (from left to right) to oppose the increase in temperature (QoL)

For M3, not simply "to oppose the change"
For M3, credit the (position of) equilibrium shifts / moves
(QoL)
to absorb the heat $O R$
to cool the reaction $O R$
to lower the temperature
(There must be a specific reference to the change that is opposed)
(d) (i) An activity which has no net / overall (annual) carbon emissions to the atmosphere OR
An activity which has no net / overall (annual) greenhouse gas emissions to the atmosphere.

OR

There is no change in the total amount / level of carbon dioxide $/ \mathrm{CO}_{2}$ carbon /greenhouse gas present in the atmosphere.

The idea that the carbon $/ \mathrm{CO}_{2}$ given out equals the carbon $/ \mathrm{CO}_{2}$ that was taken in from the atmosphere
(ii) $\mathrm{CH}_{3} \mathrm{OH}+1 \frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Ignore state symbols
Accept multiples
(iii) $3 \mathrm{H}_{2}+1 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 3 \mathrm{H}_{2} \mathrm{O}$

Ignore state symbols
OR
Accept multiples

Extra species must be crossed through
(e) M1 $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

Award full marks for correct answer Ignore the case for each letter

OR $\quad \mathrm{q}=140 \times 4.18 \times 7.5$
M2 $=4389$ (J) OR $4.389(k J)$ OR 4.39 (kJ) OR 4.4 (kJ)(also scores M1)
M3 Using 0.0110 mol therefore $\Delta \mathrm{H}=\underline{-399}\left(\mathrm{kJmol}^{-1}\right)$ OR-400

Penalise M3 ONLY if correct numerical answer but sign is incorrect; +399 gains 2 marks
Penalise M2 for arithmetic error and mark on
In M1, do not penalise incorrect cases in the formula
If $\Delta T=280.5$; score $q=m c \Delta T$ only
If $c=4.81$ (leads to 5050.5) penalise M2 ONLY and mark on for M3 = - 459
+399 or +400 gains $\mathbf{2}$ marks
Ignore incorrect units
[16]

M4.(a) Chloride (ions) are smaller (than bromide ions)
Must state or imply ions.
Allow chloride has greater charge density (than bromide).
Penalise chlorine ions once only (max 2 /3).

So the force of attraction between chloride ions and water is stronger
This can be implied from M1 and M3 but do not allow intermolecular forces.

Chloride ions attract the $\delta+$ on H of water / electron deficient H on water Allow attraction between ions and polar / dipole water. Penalise H^{+}(ions) and mention of hydrogen bonding for M3 Ignore any reference to electronegativity.
Note: If water not mentioned can score M1 only.
(b) $\Delta H_{\text {solution }}=\Delta H_{\llcorner }+\Delta H_{\text {ndd }} \mathrm{K}^{+}$ions $+\Delta H_{\text {nyd }} \mathrm{Br}^{-}$ions $/=670-322-335$

$$
\text { Allow } \Delta H_{\text {solution }}=\Delta H_{L}+\Sigma \Delta H_{\text {hyd }}
$$

$=(+) 13\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Ignore units even if incorrect.
+13 scores M1 and M2
-13 scores 0
-16 scores M2 only (transcription error).
(c) (i) The entropy change is positive / entropy increases ΔS is negative loses M1 and M3

Because 1 mol (solid) $\rightarrow 2 \mathrm{~mol}$ (aqueous ions) / no of particles increases
Allow the aqueous ions are more disordered (than the solid).
Mention of atoms / molecules loses M2
(ii) Amount of $\mathrm{KCl}=5 / \mathrm{M}_{\mathrm{r}}=5 / 74.6=\underline{0.067(0) \mathrm{mol}}$

If moles of KCl not worked out can score M3, M4 only (answer to M4 likely to be 205.7 K)

Heat absorbed $=$ mass \times sp ht $\times \Delta T$
$(1.153 \times 1000)=20 \times 4.18 \times \Delta T$
If calculation uses 25 g not 20 , lose M 3 only ($M 4=11.04$, M5 = 287)
$\Delta T=1.153 \times 1000 /(20 \times 4.18)=13.8 \mathrm{~K}$
If 1000 not used, can only score M1, M2, M3
$M 4$ is for a correct ΔT
Note that 311.8 K scores 4 (M1, M2, M3, M4).
$T=298-13.8=284(.2) \mathrm{K}$
If final temperature is negative, $M 5=0$
Allow no units for final temp, penalise wrong units.
[13]

