M1.(a) Temperature on $y$-axis
If axes unlabelled use data to decide that temperature is on $y$-axis.

Uses sensible scales
Lose this mark if the plotted points do not cover half of the paper.
Lose this mark if the temperature axis starts at $0^{\circ} \mathrm{C}$.

Plots all of the points correctly $\pm$ one square
Lose this mark if the graph plot goes off the squared paper.

Draws two best-fit lines
Candidate must draw two correct lines.
Lose this mark if the candidate's line is doubled or kinked.

Both extrapolations are correct to the $4^{\text {th }}$ minute
Award this mark if the candidate's extrapolations are within one square of your extrapolations of the candidate's best-fit lines at the $4^{\text {th }}$ minute.
(b) $19.5\left({ }^{\circ} \mathrm{C}\right)$

Accept this answer only.
(c) $26.5 \pm 0.2\left({ }^{\circ} \mathrm{C}\right)$

Do not penalise precision.
(d) (c) - (b)

Only award this mark if temperature rise is recorded to 1 d.p.
(e) Uses $m c \Delta T$ equation

Allow use of this equation with symbols or values for M1 even if the mass is wrong.

Correct value using $25 \times 4.18 \times(\mathrm{d})$
7.0 gives 732 J .

Correct answer with no working scores one mark only.
Do not penalise precision.
Allow answer in J or kJ.
Ignore sign of enthalpy change.
(f) $9.0(1) \times 10^{-3}$

Do not allow 0.01
Allow $9 \times 10^{-3}$ or 0.009 in this case.
(g) If answer to (e) in J, then (e)/(1000×(f))
or
If answer to (e) in kJ, then (e) / (f)
7.0 and $9.01 \times 10^{-3}$ gives $81.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$

If answer to (e) is in J must convert to $\mathrm{kJ} \mathrm{mol}^{-1}$ correctly to score mark.

Enthalpy change has negative sign
Award this mark independently, whatever the calculated value of the enthalpy change.
(h) The idea that this ensures that all of the solution is at the same temperature Do not allow 'to get an accurate reading' without
(i) (i) Chlorine is toxic / poisonous / corrosive

Do not allow 'harmful'.
(ii) Explosion risk / apparatus will fly apart / stopper will come out Ignore 'gas can't escape' or 'gas can't enter the tube'.

M2.(a) $q=500 \times 4.18 \times 40$
Do not penalise precision.
$=83600 \mathrm{~J}$
Accept this answer only.
Ignore conversion to 83.6 kJ if 83600 J shown.
Unit not required but penalise if wrong unit given.
Ignore the sign of the heat change.
An answer of 83.6 with no working scores one mark only.
An answer of 83600 with no working scores both marks.
(b) Moles $(=83.6 / 51.2)=1.63$

Using 77400 alternative gives 1.51 mol
Allow (a) in kJ / 51.2
Do not penalise precision.

Mass $=1.63 \times 40(.0)=65.2(\mathrm{~g})$
Allow 65.3 (g)
Using 77400 alternative gives 60.4 to 60.5
Allow consequential answer on M1.
1 mark for $M_{r}$ (shown, not implied) and 1 for calculation.
(c) Molarity $=1.63 / 0.500=3.26 \mathrm{~mol} \mathrm{dm}-3$

Allow (b) M1 $\times 2$
Using 1.51 gives 3.02
(d) Container splitting and releasing irritant / corrosive chemicals

Must have reference to both aspects; splitting or leaking (can be implied such as contact with body / hands) and hazardous chemicals.
Allow 'burns skin / hands' as covering both points Ignore any reference to 'harmful'.
Do not allow 'toxic'.
(e) (i) $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$

Allow fractions / multiples in equation. Ignore state symbols.
(ii) Iron powder particle size could be increased / surface area lessened

Decrease in particle size, chemical error $=0 / 3$
Change in oxygen, chemical error $=0 / 3$

Not all the iron reacts / less reaction / not all energy released / slower release of energy / lower rate of reaction

Mark points M2 and M3 independently.

Correct consequence of M2
An appropriate consequence, for example

- too slow to warm the pouch effectively
- lower temperature reached
- waste of materials
(f) (i) Conserves resources / fewer disposal problems / less use of landfill / fewer waste products

Must give a specific point.
Do not allow 'does not need to be thrown away' without qualification.
Do not accept 'no waste'.
(ii) Heat to / or above $80^{\circ} \mathrm{C}$ (to allow thiosulfate to redissolve)

Accept 'heat in boiling water'.
If steps are transposed, max 1 mark.

M3. (a) Three conditions in any order for M1 to M3
M1 yeast or zymase
M2 $\quad 30^{\circ} \mathrm{C} \geq \mathrm{T} \leq 42^{\circ} \mathrm{C}$
M3 anaerobic/no oxygen/no air OR neutral pH
M4 $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
OR
$2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+4 \mathrm{CO}_{2}$
Mark independently
Penalise "bacteria" and "phosphoric acid" using the list principle
Ignore reference to "aqueous" or "water" (i.e. not part of the list principle)
Or other multiples
(b) M1 Carbon-neutral

Ignore "biofuel"

M2 6 ( $\mathrm{mol} / \mathrm{molecules}$ ) $\mathrm{CO}_{2} /$ carbon dioxide taken in/used/used up (to form glucose or in photosynthesis)

M3 6 ( $\mathrm{mol} / \mathrm{molecules}$ ) $\mathrm{CO}_{2} /$ carbon dioxide given out due to 2 ( $\mathrm{mol} / \mathrm{molecules}$ ) $\mathrm{CO}_{2} /$ carbon dioxide from fermentation/ Process 2 and 4 (mol/molecules) $\mathrm{CO}_{2} /$ carbon dioxide from combustion/Process 3

It is NOT sufficient in M2 and M3 for equations alone without commentary or annotation or calculation
(c) M1 (could be scored by a correct mathematical expression)
(Sum of) bonds broken $-($ Sum of) bonds made/formed $=\Delta H$
OR
$(\Sigma) \underline{B}_{\text {reacans }}-(\Sigma) B_{\text {procutus }}=\Delta H$
(where $B=\underline{\text { bond }}$ enthalpy/bond energy) For M1 there must be a correct mathematical expression using $\Delta H$ or "enthalpy change"

M2 Reactants $=(+) \underline{4719}$
OR
Products $=(-) \underline{5750}$

M3 Overall $+4719-5750=-1031\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (This is worth 3 marks)
Award full marks for correct answer.
Ignore units.
M2 is for either value underlined
M3 is NOT consequential on M2

Award 1 mark ONLY for +1031
Candidates may use a cycle and gain full marks.
M4 Mean bond enthalpies are not specific for this reaction $O R$ they are average values from many different compounds/molecules

## Do not forget to award this mark

(d) M1 $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$ (this mark for correct mathematical formula)

M2 = 6688 (J) OR 6.688 (kJ) OR 6.69 (kJ) OR 6.7 (kJ)
M3 $\quad 0.46 \mathrm{~g}$ is 0.01 mol therefore $\Delta \mathrm{H}=\underline{\mathbf{- 6 6 9}} \mathrm{kJ} \mathrm{mol}^{-1} \mathrm{OR}-\underline{\mathbf{6 7 0}} \mathrm{kJmol}^{-1}$
OR $-668.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Award M1, M2 and M3 for correct answer to the calculation Penalise M3 ONLY if correct answer but sign is incorrect In M1, do not penalise incorrect cases in the formula
If $m=0.46$ or $m=200.46$ OR if $\Delta T=281, C E$ and penalise M2 and M3
If $c=4.81$ (leads to 7696) penalise M2 ONLY and mark on for M3 $=-769.6$ OR -770
Ignore incorrect units in M2
M4 Incomplete combustion
Do not forget to award this mark. Mark independently
[15]

M4. (a) (i) $q=m c \Delta T$
Ignore case except $T$
1
(ii) $8.80 \times 1.92 \times 9.5=161(\mathrm{~J})$ to $160.5(12)(\mathrm{J})$

Credit 0.161 provided it is clear that it is kJ .
Penalise wrong units
(iii) $11.95 \times 0.96 \times 9.5=109(\mathrm{~J})$ to $108.98(4)(\mathrm{J})$

Credit 0.109 provided it is clear that it is kJ . Penalise wrong units.
(iv) M1 Addition of (a)(ii) and (a)(iii)

M2 Multiply by 10 and convert to kJ (divide by 1000) leading to an answer
Consequential on (a)(ii) and (a)(iii)

> Penalise wrong units Ignore the sign
> Therefore $\Delta \mathrm{H}=(-) \mathbf{2 . 6 9} O \boldsymbol{O R}(-) \mathbf{2 . 7 ( 0 )}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
> Ignore greater numbers of significant figures (2.69496) Subtraction in M1 is $C E$
(b) One from:

- No account has been taken of the intermolecular forces initially in the two liquids OR each liquid has its own intermolecular forces in operation before mixing.
- The liquids may react or reference to reaction or reference to bonds broken or formed

Any statement which shows that there are other intermolecular forces to consider.
Ignore heat loss and ignore poor mixing.

