M1.(a) Enthalpy change when 1 mol of compound (1) Is formed from it's elements (1) All substances in their standard state (1) 3 (b) $\Delta H = \Sigma \Delta H^{\circ}_{c} \text{ (reactants)} - \Sigma \Delta H^{\circ}_{c} \text{ (products)} (1)$ = (7x - 394) + (4x - 286) - (-3909) (1) $= + 7 \text{ kJmol}^{-1}(1)$ 3 Heat change = m c ΔT (1) (c) $= 250 \times 4.18 \times 60 = 62700 \text{J} = 62.7 \text{kJ} (1)$ Moles $C_7 H_8 = 2.5 / 92 = 0.0272 (1)$ $\Delta H = 62.7 / 0.0272 = -2307 \text{ kJ mol}^{-1}$ (1) (allow -2300 to -2323)

(d) Mass of water heated = 25 + 50 = 75gTemp rise = $26.5 - 18 = 8.5 \,^{\circ}C$ *both for (1) mark* Heat change = $75 \times 4.18 \times 8.5 = 2665 \,\text{J} = 2.665 \,\text{kJ}$ (1) Moles HCl = $0.05 \,(1)$ $\Delta H = -2.665 / 0.05 = -53.3 \,\text{kJmol}^{-1}$ (1) *(allow -53 to -54)* (e) Less heat loss (1) 4

4

1

[15]

 (a) Particles are in maximum state of order
 (or perfect order or completely ordered or perfect crystal or minimum disorder or no disorder)

M2.

1

(b)	(Ice) melts (or freezes or changes from solid to liquid or from liquid to solid)	1	
(c)	Incr	1		
	Bigg	ger (at T_2) Second mark only given if first mark has been awarded	1	
(d)	(i)	Moles of water = 1.53/18 (= 0.085)	1	
		Heat change per mole = 3.49/0.085 = 41.1 (kJ mol⁻¹) (allow 41 to 41.1, two sig. figs.) (penalise –41 (negative value), also penalise wrong units but allow kJ only)	1	
	(ii)	$\Delta G = \Delta H - T \Delta S$	1	
	(iii)	$\Delta H = T\Delta S \text{ or } \Delta S = \Delta H/T$ (penalise if contradiction)	1	
		$\Delta S = 41.1/373 = 0.110 \text{ kJ K}^{-1} (\text{mol}^{-1}) (\text{or } 110 (\text{J K}^{-1} (\text{mol}^{-1})) (allow 2 sig. figs.) (if use value given of 45, answer is 0.12 (or 120 to 121) (if \Delta H is negative in (d) (i), allow negative answer) (if \Delta H is negative in (d) (i), allow positive answer) (if \Delta H is positive in (d) (i), penalise negative answer)$	1	
		Correct units as above (mol-1 not essential)	1	10]

МЗ.	(a	1)	(i) <u>enthalpy change</u> when 1 mol of a substance (or compound) (QL mark)	1
			is (completely) burned in oxygen (or reacted in <u>excess</u> oxygen)	1
			at 298 K and 100 kPa (or under standard conditions)	1
	((ii)	heat produced = mass of water × Sp heat capacity $x\Delta T$ (or $mc\Delta T$)	1
			= $150 \times 4.18 \times 64$ (note if mass = 2.12 lose first 2 marks then conseq) = 40100 J or = 40.1 kJ (allow 39.9 - 40.2 must have correct units)	1
			moles methanol = mass/M _r = 2.12/32 (1) = 0.0663	1
			$\Delta H = -40.1/0.0663 = -605 \text{ kJ (mol}^{-1})$ (allow -602 to -608 or answer in J) (note allow conseq marking after all mistakes but note use of 2.12 g loses 2 marks	1
	(b) ((i)	equilibrium shifts to left at high pressure	1
			because position of equilibrium moves to favour fewer moles (of gas)	1
	((ii)	at high <u>temperature</u> reaction yield is low (or at low <u>T</u> yield is high)	1
			at low <u>temperature</u> reaction is slow (or at high <u></u> <i>T</i> reaction is fast)	1
			therefore use a balance (or compromise) between <u>rate</u> and <u>yield</u>	1

(c) $\Delta H = \Sigma \Delta H_{\circ} (\text{reactants}) - \Sigma \Delta H_{\circ} (\text{products}) \text{ (or correct cycle)}$	1	
$\Delta H_{c}^{\bullet}(CH_{3}OH) = \Delta H_{c}^{\bullet}(CO) + 2 \times \Delta H_{c}^{\bullet}(H_{2}) - \Delta H$	1	
= (–283) + (2 × –286) – (–91) (mark for previous equation or this) = –764 (kJ mol ⁻¹) (<i>units not essential but lose mark if units wrong)</i> (<i>note</i> + 764 scores 1/3)	1	[15]