M1.(a) (Nucleophilic) addition-elimination

- Minus sign on NH₃ loses M1(but not M4 also)
- M2 not allowed independent of M1, but

$$M2$$
 $M3$

$$CH_3CH_2 \longrightarrow CH_3CH_2 \longrightarrow$$

- allow M1 for correct attack on C+
- + rather than δ+ on C=O loses M2
- If CI lost with C=O breaking, max1 for M1
- M3 for correct structure <u>with charges</u> but Ip on O is part of M4
- only allow M4 after correct/very close M3
- For **M4**, ignore NH₃ removing H⁺ but lose **M4** for Clremoving H⁺ in mechanism,
- but ignore HCl shown as a product

propanamide (Ignore -1-)

penalise other numbers penalise propaneamide and N-propanamide

(b) Nucleophilic substitution

- Minus sign on NH₃ loses M1 (not M4 also)
- + rather than δ+ on C=O loses M2

1

4

1

1

$$M2$$
 CI M_3 structure

 CH_3CH_2 CH_2 CH_2 CH_3CH_2 CH_2 CH_3 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH

- ALLOW SN1 so allow M2 for loss of CI⁻ before attack of NH₃ on C+ for M1
- only allow M4 after correct/very close M3
- For M4, ignore NH₃ removing H⁺ but lose M4 for Clremoving H⁺ in mechanism,

Propylamine (ignore number 1)

• but ignore HCl shown as a product

or propan-<u>1</u>-amine or <u>1</u>-aminopropane (<u>number 1 needed</u>)

penalise other numbers

allow <u>1</u>-propanamine

4

1

1

1

- (c) electron rich ring or benzene or pi cloud <u>repels</u> nucleophile/ammonia Allow
 - C–Cl bond is short/stronger than in haloalkane
 - C–Cl is less polar than in haloalkane
 - · resonance stabilisation between ring and Cl

[13]

- **M2.** (a) (i) propan(e)-1,2,3-triol or 1,2,3- propan(e)triol not propyl ignore hyphen, commas
 - (ii) soaps

allow anionic surfactant not cationic surfactant

(b) (i) (bio)diesel

Allow fuel for <u>diesel</u> engines not biofuel, not oils

1

(ii)

ignore anything else attached except any more H atoms.

1

1

(iii) $CH_3(CH_2)_{12}COOCH_3 + 21\frac{1}{2}O_2 \rightarrow 15CO_2 + 15 H_2O$

OR

 $C_{15}H_{30}O_2$ or 43/2

not allow equation doubled

[5]

M3.(a) (i) Green

Ignore shades of green.

1

(ii) Excess acidified potassium dichromate(VI)

1

Reflux (for some time)

1

		In the diagram credit should be given for • a vertical condenser	
		Lose M3 and M4 for a distillation apparatus.	1
		 an apparatus which would clearly work Do not allow this mark for a flask drawn on its own. Penalise diagrams where the apparatus is sealed. 	1
	(iii)	Distillation	1
		Immediately (the reagents are mixed)	1
(b)	Kee	ep away from naked flames Allow heat with water-bath or heating mantle. If a list is given ignore eye protection, otherwise lose this mark.	1
(c)	(i)	Tollens' or Fehling's reagents Incorrect reagent(s) loses both marks. Accept mis-spellings if meaning is clear.	1
		Silver mirror / red ppt. formed Accept 'blue to red' but not 'red' alone.	1
	(ii)	Sodium carbonate (solution) / Group II metal Allow indicator solutions with appropriate colours. Accept any named carbonate or hydrogen carbonate.	

1

(d) Propanoic acid

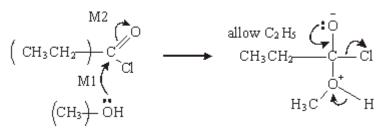
If this mark is lost allow one mark if there is reference to stronger intermolecular forces in the named compound. Lose M1 and M3.

1

Contains hydrogen bonding

1

Some comparison with other compounds explaining that the intermolecular forces are stronger in propanoic acid


[15]

M4. (a) $CH_3OH + CH_3CH_2COOH \rightarrow CH_3CH_2COOCH_3 + H_2O$

1

(b) (nucleophilic) addition-elimination NOT acylation

1

ignore use of Cl⁻to remove H⁺

M3 for structure

M4 for 3 arrows and lone pair

4

(c)

allow C₂H₅ and –CO₂– allow CH₃CH₂COOCOCH₂CH₃ or (CH₃CH₂CO)₂O

- (d) (i) faster/not reversible/bigger yield/purer product/no(acid) (catalyst) required
 - (ii) anhydride less easily hydrolysed or reaction less violent/exothermic no (corrosive) (HCI) fumes formed or safer or less toxic/dangerous expense of acid chloride or anhydride cheaper any one
- (e) (i) $C_8H_8O_2$
 - (ii) any two from

Allow $-CO_2$ — allow C_6H_5 2

[12]

1

1

1

1

M5. (a) mol
$$CH_3OH = 0.07(0)$$

 $mol H_2 = 0.24(0)$

(b) (i)
$$\frac{[\text{CO}][\text{H}_2]^2}{[\text{CO}][\text{H}_2]^2} \frac{(0.082/1.5)}{(0.210/1.5)(0.275/1.5)^2}$$

$$allow () but expression using formulae must have brackets alternative expression using numbers must include volumes 1

(ii) M1 divides by vol

Mark independently from (b)(i)

any AE is -1

if volume missed, can score only M3 and M4

$$\frac{(0.082/1.5)}{(0.210/1.5)(0.275/1.5)^2} = \frac{(0.05467)}{(0.14)(0.1833)^2}$$

mark is for correct insertion of correct numbers in correct Kc expression in b(ii)

If Kc expression wrong, can only score M1 & M4

If numbers rounded, allow M2 but check range for M3

M3 11.6 or 11.7

mark for answer above 11.7 up to 12.2 scores 2 for M1 and M2

if vol missed, can score M3 for 5.16 (allow range 4.88 to 5.21)

M4 mol² dm⁹

Units conseq to their Kc in (b)(ii)

1$$

(c) **M1** T₁

if wrong - no further marks

M2 (forward) reaction is exothermic OR gives out heat

<u>backward</u> reaction is endothermic only award M3 if M2 is correct

M3 shifts to RHS to replace lost heat

OR to increase the temperature

OR to oppose fall in temp

backward reaction takes in heat

OR to lower the temperature not just to oppose the change

1

(d) fossil fuels used

OR

CO₂ H₂O produced/given off/formed which are greenhouse gases

OR

SO₂ produced/given off/formed which causes acid rain

OR

Carbon produced/given off/formed causes global dimming

not allow electricity is expensive ignore just global warming ignore energy or hazard discussion

1

1

(e) $C_{17}H_{35}COOCH_3$ or $C_{17}H_{31}COOCH_3$ or $C_{17}H_{29}COOCH_3$

OR

 $CH_3OOCC_{17}H_{35}$ or $CH_3OOCC_{17}H_{31}$ or $CH_3OOCC_{17}H_{29}$

[13]