M2. (a) (i) propyl methanoate (1)

not propanyl

- · A wrong reagent or no reagent scores zero
- An incomplete reagent such as silver nitrate for Tollens, or potassium dichromate loses the reagent mark, but can get both observation marks
- penalise observations which just say colour change occurs or only state starting colour
- (ii) Reagent: NaHCO₃ (1)
 Observation with **C**: no reaction (1)
 Observation with **D**: effervescence (1)
 for **C** and **D** NOT Tollens

Test	an identified (hydrogen) carbonate	acidified K ₂ Cr ₂ O ₇	acidified KMnO₄	correct metal	UI or stated indicator	PCI₅
Observation with C	no reaction	goes green	goes colourless	no reaction	no change	no reaction
observation with D	bubbles or CO ₂	no change	no change	bubbles or H ₂	red or correct colour pH 3 – 6.9	(misty) fumes

4

- (b) (i) Reagent: pentan-2-one (1)
 or 2-pentanone
 but not pent-2-one or pentyl
 - (ii) Reagent: Tollen's or Fehling's (1)

Observation with E: no reaction (1)

Observation with F: silver mirror or red ppt (1)

for **E** and **F**

Test	Tollens	Fehlings or Benedicts	iodoform or I₂/NaOH	acidified K₂Cr₂O ₇	Schiff's
observation with E	no reaction	no reaction	yellow (ppt)	no change	no reaction
observation with F		red or ppt not red solution	no reaction	goes green	goes pink

4

1

1

$$\begin{array}{c} H \\ | \\ | \\ \text{CH}_3\text{CH}_2 & \text{C} - \text{CHO} \\ | \\ | \\ \text{CH}_3 \end{array} \tag{1}$$

must be aldehyde. Allow C_2H_5 for CH_3CH_2 otherwise this is the only answer

[9]

M3.A

[1]

M2 CH₃CH₂OH or C₂H₅OH

M3 CH₃CH₂COOCH₂CH₃ + H₂O

allow C₃H₇COOC₂H₅

penalise M3 for wrong products and unbalanced equation

1

M4 H₂SO₄ or HCl or H₃PO₄ conc or dil or neither not HNO₃

1

1

1

(b) M1 CH₃CH₂CH₂CH₂OH

not C₄H₃OH

M2 (CH₃CO) ₂O

M3 → CH₃COOCH₂CH₂CH₂CH₃ + CH₃COOH

allow CH₃COOC₄H₃

penalise M3 for wrong products and unbalanced equation

(c) (nucleophilic) addition-elimination

not acylation alone

M2 not allowed indep of M1 but allow M1 for correct attack on C+

+C=O loses M2

only allow M4 after correct or v close M3 ignore CF removing H⁻

(d)

$$\begin{pmatrix}
CH_2OOCC_{17}H_{31} \\
CH_2OOCC_{17}H_{33} \\
CH_2OOCC_{17}H_{29}
\end{pmatrix} + 3 CH_3OH$$

$$CH_2OH$$

$$CH$$

ignore errors in initial triester First mark for 3CH₃OH Third mark for all three esters

3

5

$$-O-CH_2CH_2-O-C$$

First mark for correct ester link second mark for the rest including trailing bonds

If ester link wrong, lose second mark also

Adv reduces landfill

saves raw materials

lower cost for recycling than making from scratch reduces $\text{CO}_{\scriptscriptstyle 2}$ emissions by not being incinerated

not allow cost without qualification ignore energy uses

Disad

difficulty/cost of collecting/sorting/processing product not suitable for original purpose, easily contaminated not allow cost without qualification ignore energy uses

[19]

2

1

1

1

M5. (a) nucleophilic addition

$$M2$$
 CH_3CH_2
 CH_3

(b) (i) 2-hydroxybutanenitrile

1

(allow 1 for amide even if not C₄H₇NO, i.e. RCONH₂)

(if not amide, allow one for any isomer of C₄H₁NO which shows geometric isomerism)

2

1

(ii) O || CH₃ CH₂—C— COOH

1

1

(iii) CH₃CH=CHCOOH

[11]

M6.D

[1]

M7. (a) propyl methanoate; $HCOOC_3H_7 + OH^- \rightarrow HCOO^- + C_3H_7OH$ 1 OR HCOOC₃H₇ + NaOH → HCOONa + C₃H₇OH; 1 (b) order wrt A = 1; 1 order wrt NaOH = 1; 1 Initial rate in Exp $4 = 2.4 \times 10^{-3}$; 1 (i) r(ate) = k[A](c) OR $r(ate) = k[A][NaOH]^{\circ};$ (penalise missing [] but mark on) (penalise missing [] once per paper) (if wrong order, allow only units mark conseq on their rate eqs) (penalise k_a or k_w etc) 1 (ii) 1 = 0.45;1 S⁻¹; l (iii) (large) excess of OH- or [OH-] is large/high; 1 [OH-] is (effectively) constant

OR

[A] is the limiting factor (Q of L mark)

1

(d) (i)

CH2OH
CHOH
CHOH
CH2OH

1

propan(e)-1,2,3-triol

OR

1,2,3-propan(e)triol

OR

Glycerol;

1

(ii) CH₃(CH₂)₁₆COONa or C₁₇H₃₅COONa or C₁₈H₃₅O₂Na; (ignore 3 in front of formula but not if indicating trimer)

d) soap -

1

1

(not just anion and penalise Na shown as covalently bonded) soap - allow with detergent but not detergent alone;

[15]

M8.D

[1]