M1. (a)	$2MnO_4^{-} + 16H^{+} + 5C_2O_4^{-2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$	1
	Mn ²⁺ OR Mn ³⁺	
	If catalyst incorrect can only score M1 and M3	1
	(Possible because) <u>Mn</u> can exist in variable oxidation states	1
	E_{a} lowered because oppositely charged ions attract	
	These marks can be gained in any order	1
	Mn^{3+} (reduced) to Mn^{2+} by $C_2O_4^{2-}$ / equation	
	M5 may appear before M2	1
	Mn^{2+} (oxidised (back)) to Mn^{3+} by MnO_4^- / equation	
	M5 and M6 can be scored in unbalanced equations or in words showing:	
	$Mn^{3+} + C_2 O_4^{2-} \rightarrow Mn^{2+}$	
	$Mn^{2^+} + MnO_4^- \rightarrow Mn^{3^+}$	1

(b) Graph marks

Cannot score graph marks (M1 and M2) if no axes and / or no labels

1 1

Explanation marks

		Slope / rate increases as catalyst (concentration) forms	1	l
		Slope / rate decreases as (concentration) of MnO ₄ ⁻ ions / reactant(s) decreases (OR reactants are being used up) Explanation marks can be awarded independent of graph.	I	[10]
M2. (a)	2MnO₄	 + 16H⁺ + 5C₂O₄^{2−} → 2Mn²⁺ + 8H₂O + 10CO₂ For all species correct / moles and species correct but charge incorrect 	1	
		For balanced equation including all charges (also scores first mark)	1	
	(b)	<u>Manganate(VII) ions</u> are <u>coloured</u> (purple)	1	
		All other reactants and products are not coloured (or too faintly coloured to <i>Allow (all) other species are colourless</i> <i>Allow Mn</i> ²⁺ <i>are colourless / becomes colourless / pale pink</i>	detect) 1	
	(c)	The catalyst for the reaction is a reaction product	1	
		Reaction starts off slowly / gradient shallow	1	
		Then gets faster/rate increases / gradient increases Allow concentration of MnO₄ decreases faster / falls rapidly	1	

- (d) Mn²⁺ ions Allow Mn³⁺ ions
- (e) $MnO_4^- + 8H^+ + 4Mn^{2+} \rightarrow 5Mn^{3+} + 4H_2O$ Allow multiples

$$2\mathsf{Mn}^{*} + \mathsf{C}_2\mathsf{O}_4^{2-} \longrightarrow 2\mathsf{Mn}^{2+} + 2\mathsf{CO}_2$$

M3.(a) Negative ions <u>repel</u> one another

- (b) Positive ions <u>attract</u> negative ions in catalysed process Allow activation energy decreases. Allow alternative route with lower E_a Ignore references to heterogenous catalysis.
- (c) $S_2O_8^{2-} + 2e^- \longrightarrow 2SO_4^{2-}$ Allow multiples including fractions. Ignore state symbols.

(d) $S_2O_{8^{2-}} + 2I^{-} \longrightarrow 2SO_{4^{2-}} + I_2$ Allow multiples including fractions. Ignore state symbols. Allow the correct equation involving I_3^{-} $S_2O_{8^{2-}} + 3I^{-} \longrightarrow 2SO_{4^{2-}} + I_3^{-}$

[4]

1

1

1

1

[10]

1

1

1

M4.(a) Variable / many oxidation states

Equations can be in either order Allow multiples

$$V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$$

1

1

1

1

1

1

1

1

1

- (c) (i) In a different phase / state <u>from reactants</u>
 - (ii) Impurities poison / deactivate the catalyst / block the active sites Allow (adsorbs onto catalyst AND reduces surface area)
- (d) (i) The catalyst is a reaction product
 - (ii) Mn²⁺ / Mn³⁺ ion(s)
 - (iii) $4Mn^{2*} + MnO_4 + 8H^* \rightarrow 5Mn^{3*} + 4H_2O$ Equations can be in either order

 $2Mn^{3+} + C_2O_4^{2-} \rightarrow 2Mn^{2+} + 2CO_2$

[9]

M5 .(a)	С	obalt ha	as variable oxidation states Allow exists as Co(II) and Co(III)	1
		(It can	act as an intermediate that) lowers the activation energy Allow (alternative route with) lower E _a	1
		CH₃Cŀ	$HO + 2Co^{3+} + H_2O \rightarrow CH_3COOH + 2Co^{2+} + 2H^+$ Allow multiples; allow molecular formulae Allow equations with H_3O^+	1
		$\frac{1}{2}O_{2} +$	$2Co^{_2*} + 2H^* \rightarrow 2Co^{_3*} + H_2O$	1
(b)	(i) [$Co(H_2O)_6]^{2*} + 3H_2NCH_2CH_2NH_2 \rightarrow [Co(H_2NCH_2CH_2NH_2)_3]^{2*} + 6H_2O$ Do not allow en in equation, allow $C_2H_6N_2$	1
			The number of particles increases / changes from 4 to 7 Can score M2 and M3 even if equation incorrect or missing provided number of particles increases	1
		i	So the entropy change is positive / disorder increases / entropy increases	1
		(ii) I	Minimum for M1 is 3 bidentate ligands bonded to Co Ignore all charges for M1 and M3 but penalise charges on any ligand in M2	1
			Ligands need not have any atoms shown but diagram must show 6 bonds from ligands to Co, 2 from each ligand Minimum for M2 is one ligand identified as H ₂ NNH ₂ Allow linkage as -C-C- or just a line.	
				1

	Minimum for M3 is one bidentate ligand showing two arrows from separate nitrogens to cobalt	1
(c)	Moles of cobalt = (50 × 0.203) / 1000 = <u>0.01015</u> mol Allow 0.0101 to 0.0102	1
	Moles of AgCl = 4.22/143.4 = 0.0294 Allow 0.029 If not AgCl (eg AgCl₂ or AgNO₃), lose this mark and can only score M1, M4 and M5	1
	Ratio = Cl ⁻ to Co = 2.9 : 1 Do not allow 3 : 1 if this is the only answer but if 2.9:1 seen somewhere in answer credit this as M3	1
	$[Co(NH_3)_6]CI_3$ (square brackets not essential)	1
	Difference due to incomplete oxidation in the preparation Allow incomplete reaction. Allow formation [Co(NH ₃) ₅ Cl]Cl ₂ etc. Some chloride ions act as ligands / replace NH ₃ in complex. Do not allow 'impure sample' or reference to practical deficiencies	1 [15]

M6.(a) Stoppered flask or similar with side arm *Allow gas outlet through stopper.*

1

	Calibrated container for collection eg gas syringe Allow collection over water, but must use calibrated vessel for collection. Lose 1 mark if apparatus is not gas tight.	1	
(b)	Plot a graph of 'volume (of gas)' against 'time'	1	
	Determine the slope (gradient) at the beginning	1	
(c)	Repeat with same volume or concentration of hydrogen peroxide <u>and</u> at the same temperature Ignore references to results. Do not allow 'keep everything the same' or words to that effect. Must mention volume or concentration and temperature.	1	
	Add cobalt(II) chloride to one experiment	1	[6]