M1.(a)For reactions 1 to 3 must show complex ions as reactants and products
Take care to look for possible identification on flow chart

Reaction 1

ammonia solution

W is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{f}} \mathrm{J}^{2+}\right.$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{2+}}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}\right.$
Correct equation scores all 3 marks

Reaction 2

Allow oxygen, Do not allow air
$\mathrm{H}_{2} \mathrm{O}_{2}$
\mathbf{X} is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{]^{3+}}{ }^{3+}\right.$

$$
\begin{aligned}
& 2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{]_{]}\right]^{+}}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+2 \mathrm{OH}^{-}\right. \\
& \text {Allow } 2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+2 \mathrm{OH}^{-}
\end{aligned}
$$

$$
\text { Correct equations score all } 3 \text { marks }
$$

Reaction 3

HCl
Do not allow Cł but mark on

```
\(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{2}+6 \mathrm{H}_{2} \mathrm{O} /\)
    Correct equation scores previous mark
\(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{-2}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{+}\)
    This equation scores all three marks
```


Reaction 4

$\mathrm{Na}_{2} \mathrm{CO}_{3} \quad$ Or $\mathrm{NaOH} / \mathrm{NH}_{3}$
Do not allow CaCO_{3} as a reagent but mark onprevious mark

Or $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{2+}}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CoCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}^{+}\right.$
Allow $\mathrm{Co}^{2+}+\mathrm{CO}_{3}{ }^{2} \rightarrow \mathrm{CoCO}_{3}$
(b) $\mathrm{SO}_{3}{ }^{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{4}{ }^{2}$

Allow multiples

The activation energy is lower (for the catalysed route)
Or Co ${ }^{3+}$ attracts $\mathrm{SO}_{3}{ }^{2} / \mathrm{CO}^{2+}$ attracts $\mathrm{SO}_{3}{ }^{2} /$ oppositely charged ions attract
$1 / 2 \mathrm{O}_{2}+2 \mathrm{Co}^{2+}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Co}^{3+}$

$$
2 \mathrm{Co}^{3+}+\mathrm{SO}_{3}^{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Co}^{2+}+\mathrm{SO}_{4}^{2}+2 \mathrm{H}^{+}
$$

Allow these equations in either order

M2. (a) $2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-}$
two negative ions repel / lead to reaction that is slow / lead to reaction that has high E_{a}
iron able to act because changes its oxidation state allow iron has variable oxidation state

With iron ions have alternative route / route with lower activation energy
(b) (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}^{+}$ can have $\mathrm{H}_{2} \mathrm{O}$ on LHS and $\mathrm{H}_{3} \mathrm{O}^{+}$on R do not penalise further hydrolysis equations allow high charge density
Fe^{3+} ion has higher charge (to size ratio) (than Fe^{2+})
increases polarisation of co-ordinated water / attracts O releasing an H^{+}ion / weakens $\mathrm{O}-\mathrm{H}$ bond
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}$
or $6 \mathrm{~mol} \mathrm{Fe}(I I)$ react with 1 mol dichromate
If factor of 6 not used max $=3$ for M2, M4 and M5
e.g. 1:1 gives ans $=8.93$ to 8.98% (scores 3)
moles dichromate $=23.6 \times 0.218 / 1000=5.14 \times 10^{-4}$
moles iron $=5.14 \times 10^{-4} \times 6=0.00309$
M3 also scores M1
mass iron $=0.00309 \times 55.8=0.172$
Mark is for moles of iron $\times 55.8$ conseq
Allow use of 56 for iron
$\%$ by mass of iron $=0.172 \times 100 / 0.321=53.7 \%$
Answer must be to at least 3 sig figures allow 53.6 to 53.9
Mark is for mass of iron $\times 100 / 0.321$ conseq
(c) brown precipitate / solid

Allow red-brown / orange solid
Not red or yellow solid
bubbles (of gas) / effervescence/ fizz
Allow gas evolved / given off
Do not allow just gas or CO_{2} or CO_{2} gas
$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{3+}}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}\right.$
Allow
$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
Use of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
e.g. ... $+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow . .+$...$++6 \mathrm{Na}^{+}$
[16]

M3. (a) Same phase/state
(b) Because only exist in one oxidation state

Allow do not have variable oxidation states
(c) $2 \mathrm{I}^{-}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow \mathrm{I}_{2}+2 \mathrm{SO}_{4}{ }^{2-}$

Ignore state symbols
Allow multiples
(d) Both (ions)have a negative charge

Or both have the same charge
Or (ions) repel each other
Do not allow both molecules have the same charge (contradiction)
(e) $2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-}$
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$
Equations can be in any order
Positive and negative (ions)/oppositely charged (ions)
Mark independently
(f) Equations 1 and 2 can occur in any order

Allow idea of Fe^{3+} converted to Fe^{2+} then Fe^{2+} converted back to Fe^{3+}

M4. (a) Incomplete (or partially filled) d orbitals/sub-shells
Do not allow d shell
(b) Variable oxidation states
(c) (i) $\left[\mathrm{H}_{3} \mathrm{~N}-\mathrm{Ag}-\mathrm{NH}_{3}\right]^{+}$ Allow [Cl-Ag-Cl] or similar $\mathrm{Cu}(\mathrm{I})$ ion Allow compounds in (i), (ii) and (iii) (eg Cl-Be-Cl) Allow no charge shown, penalise wrong charge(s)
(ii) Cis platin drawn out as square planar Allow NiX ${ }_{4}{ }^{2-}$ etc
(iii) $\left[\mathrm{CuCl}_{4}\right]^{2-}$ drawn out as tetrahedral ion Or [CoClif $]^{2-}$ drawn out

1
(d) (i) $\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$ Allow multiples Allow $\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ ignore state symbols 1
(ii) In a different phase/state (from the reactants)
(iii) $\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}$ can be in either order
$\mathrm{V}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}$
allow multiples
(iv) Surface area is increased

By use of powder or granules or finely divided
Allow suspending/spreading out onto a mesh or support
(e) (i) Forms two or more co-ordinate bonds

Allow more than one co-ordinate bond or donates more than 1 electron pair.
Do not allow "has more than one electron pair"
(ii) Number of product particles > Number of reactant particles
Allow molecules/entities instead of particles
Penalise incorrect numbers (should be $2 \rightarrow 5$)
Disorder increases or entropy increases (or entropy change is positive)

Allow ΔG must be negative because $\Delta H=0$ and ΔS is +ve
(iii) 6

Cyanide strongly bound to Co (by co-ordinate/covalent bond)

