M1. (a) Alternative route
Allow mechanism outlinedallow forms intermediate speciesLower activation energy
(b) Variable oxidation stateallow changes oxidation states
(c) (i) $\mathrm{SO}_{2}+\mathrm{V}_{2} \mathrm{O}_{5} \rightarrow \mathrm{SO}_{3}+\mathrm{V}_{2} \mathrm{O}_{4}$ allow $2 \mathrm{VO}_{2}$ instead of $\mathrm{V}_{2} \mathrm{O}_{4}$

$$
\mathrm{O}_{2}+2 \mathrm{~V}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{~V}_{2} \mathrm{O}_{5}
$$

(ii) Poison attaches to surface
Allow blocks active site/surface
Decreases surface area
(iii) Purify reactants
Allow remove impurities

M2. (a) FeCl_{3} accepts electron pairs from water
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ donates protons
(b) The Fe^{2+} ion has a smaller charge to size ratio

Hence less polarising than Fe^{3+} or less weakening effect on O-H bonds

1
(c) (i) $\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}$
$\mathrm{V}_{2} \mathrm{O}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}$
(ii) Both ions are negative or ions repel

$$
2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-} \quad \text { Species }
$$

Balanced

Species

Balanced
1
[13]

M3. (a) A catalyst in the same phase/phase as the reactants
(b) (i) A reaction in which a product acts as a catalyst
(ii) Mn^{2+} or Mn^{3+}
"Self-catalysing" not allowed
(c) (i) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$

$$
\begin{aligned}
\text { or } & 4 \mathrm{CO}+2 \mathrm{NO}_{2} \rightarrow 4 \mathrm{CO}_{2}+\mathrm{N}_{2} \\
& C \text { not allowed as a product }
\end{aligned}
$$

Reducing agent CO
(ii) Pt, Pd or Rh

Deposited on a ceramic honeycomb or matrix or mesh or sponge

To increase surface area of catalyst
(ii) Reactants not brought together or

> No increase in reactant concentration on catalyst surface or Reactants not held long enough for a reaction to occur or Reactant bonds not weakened

(d) (i) Reactants cannot move on surface or products not desorbed or
 (d) (i) Reactants cannot move on surface or products not desorbed or

 Reactant bonds not weakedM4. (a) Iron
Heterogeneous; catalyst in a different phase fromthat of the reactants

Poison; a sulphur compound (allow sulphur)

Poison strongly adsorbed onto active sites/ blocked

Poison not desorbed or reactants not adsorbed or catalyst surface area reduced

1
(b) Pale green solution 1

Green precipitate formed

Insoluble in excess ammonia

Equation:
e.g. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}^{+}$Species

Balance
1
$N B \quad$ Allow equations with $\mathrm{H}_{2} \mathrm{O}$ and OH - if reaction of $\mathrm{H}_{2} \mathrm{O}$ with NH_{3} also given

Max 4

M5. (a) effect on reaction rate: catalyst provides an alternative reaction route.;
with a lower E_{a};
more molecules able to react or rate increased;
1
equilibrium: forward and backward rates changes by the same amount;
hence concentration of reactants and products constant or yield unchanged;
(b) heterogeneous: catalyst in a different phase or state to that of
the reactants;
active site: place where reactants adsorbed or attached or bond etc.;
1
reaction occurs or an explanation of what happens; (allow absorbed)
reasons: large surface area; reduce cost or amount of catalyst;
catalyst poison: lead adsorbed;
lead not desorbed or site blocked;
(lead adsorbed irreversibly scores both of these marks)
(c) reaction slow as: both ions negatively charged or ions repel;

$$
2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-} \quad \text { Species; } \quad \text { Balanced; } ;
$$

$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \quad$ Species;
Balanced;

M6.C

