(a) (i) (free-) radical substitution (both words required for the mark)
initiation $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}$ -
(credit correct half arrows, but penalise double headed arrows)
first propagation $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl}$
second propagation $\cdot \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{Cl}$
(penalise the absence of dots on radicals once only) (penalise radical dot on Cl of $\mathrm{CH}_{2} \mathrm{Cl}$ once only)
(ii) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}$
(penalise if any radicals appear in this equation)
(b) \quad M1: $\quad \mathrm{mol} C=10.1 / 12.0 \quad$ and $\quad \mathrm{mol} \mathrm{Cl}=89.9 / 35.5$

M2: Ratio $0.842: 2.53$ OR 1:3 OR CCl3

M3: 237.0/Mr of $\mathrm{CCl}_{3}=237.0 / 118.5=2 \quad$ Therefore $\mathrm{C}_{2} \mathrm{Cl}_{6}$ (correct answer gains full credit)

1

OR
M1: $\quad 237.0 \times 10.1 / 100$ and $237 \times 89.9 / 100$

M2: Ratio 23.9/12.0 : 213/35.5 OR 2 : 6

M3: $\mathrm{C}_{2} \mathrm{Cl}_{6}$ (correct answer gains full credit)
(c) any two from CHBr_{3} or CBr_{4} or $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}$ (or $\mathrm{CHBr}_{2} \mathrm{CHBr}_{2}$) or $\mathrm{C}_{2} \mathrm{Br}_{6}$ (or $\mathrm{CBr}_{3} \mathrm{CBr}_{3}$)
(ignore HBr or H_{2})
(ignore equations and ignore names when given in addition
to formulae)
(penalise names alone)

M2.C

M3. (a) (i) $\mathrm{CHCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\mathrm{HCl}$ (1)
(ii) UV light / sunlight OR high $\mathrm{T} O R \mathrm{~T} \geq 500^{\circ} \mathrm{C}$ (1)
$\operatorname{maxT}=1000^{\circ} \mathrm{C}$
NOT heat / light
Ignore pressure
(b) Initial step: $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{\cdot}$ (1)

Condition could be on first equation arrow
First propagation step: $\mathrm{CHCl}_{3}+\mathrm{Cl}^{\cdot} \rightarrow \dot{\mathrm{CCl}_{3}}+\mathrm{HCl}$ (1)
Second propagation step: $\dot{\mathrm{C}} \mathrm{Cl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\mathrm{Cl} \cdot(1)$
A termination step: $\dot{\overline{\mathrm{C}}} \mathrm{Cl}_{3}+\mathrm{Cl} \cdot \rightarrow \mathrm{CCl}_{4}(1)$
$\mathrm{OR} 2 \dot{\mathrm{CCl}}_{3} \rightarrow \mathrm{C}_{2} \mathrm{Cl}_{6}$
Not $2 \mathrm{Cl} \cdot \rightarrow \mathrm{Cl}_{2}$
Ignore additional termination steps

M4. M1: uv light/sunlight

OR

$$
\begin{aligned}
& \mathrm{T}=450{ }^{\circ} \mathrm{C} \text { to } 1000^{\circ} \mathrm{C} \text {; } \\
& \text { (do not credit "high temperature") } \\
& \text { (ignore references to pressure or catalyst) } \\
& \text { (penalise M1 if aqueous chlorine OR chlorine water) } \\
& \text { (credit M1 if the condition appears over the arrow of the } \\
& \text { initiation step) }
\end{aligned}
$$

M2: $\quad \mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}$.;
(credit correct half arrows, but penalise (once in the question) the use of double headed arrows)

M3: $\quad \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl} . \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} .+\mathrm{HCl} ;$
(credit $\mathrm{CH}_{3} \mathrm{CH}_{3}$ for ethane and $\mathrm{C}_{2} \mathrm{H}_{5}$ - for the ethyl radical)

M4: $\mathrm{CH}_{3} \mathrm{CH}_{2} .+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Cl}$.;

M5: $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} .+\mathrm{CH}_{3} \mathrm{CH}_{2} . \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}$;
(penalise the absence of dots once only in this question) (penalise subsequent ionic reactions as contradictions for each reaction contradicted)
(if neither M 3 nor M 4 scored, allow $\mathrm{CH}_{3} \mathrm{CH}_{2} .+\mathrm{Cl} . \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ for one mark)

M5. (a) (i) UV light OR sunlight $\mathrm{OR} T \geq 450^{\circ} \mathrm{C}$ (1)
NOT high T
(ii) (free) radical substitution (1)
(iii) CCl_{4} (1) OR named
(b) (i) $\mathrm{CH}_{3} \mathrm{Cl}+\underset{\mathrm{CN}^{-}}{\mathrm{KCN}} \rightarrow \mathrm{CH}_{3} \mathrm{CN}+\underset{\mathrm{Cl}^{-}}{\mathrm{KCl}}$ (1)
(ii) nucleophilic substitution (1)
(iii) $\mathrm{C}-\mathrm{Br}$ bond is weaker (than $\mathrm{C}-\mathrm{Cl}$ bond)

OR $\mathrm{C}-\mathrm{Br}$ bond enthalpy is less than $\mathrm{C}-\mathrm{Cl}(1)$
Ignore electronegativity
(c) $\mathrm{CH}_{3} \mathrm{COOH}$ OR ethanoic acid (1)
(d) (i) $\stackrel{\delta+}{\mathrm{C}}-\stackrel{\delta-}{\mathrm{C}}$ OR C-Cl is polar (1) OR C atom is electron deficient / $\delta+$
(ii) methylamine (1) only
(iii) $\mathrm{S}_{\mathrm{N}} 1$ scores full marks

M6. (a) (i) (Free) radical substitution
(Both words needed)
(ii) M1 initiation ONLY

M2 ultra-violet light OR sunlight $O R 1000^{\circ} \mathrm{C} \geq \mathrm{T} \geq 450^{\circ} \mathrm{C}$ (Ignore reference to temperature if included with uv light) (Penalise "high temperature" for M2)
(iii) $2 \dot{\mathrm{C}} \mathrm{H}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$ ($\mathrm{ORCH}_{3} \mathrm{CH}_{3}$ as alternative to $\mathrm{C}_{2} \mathrm{H}_{6}$)
(iv) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Br}_{2}+\mathrm{HBr}$
(b) (i) Electron pair donor

OR species with an electron pair able to form a covalent bond.
(ii) Methylamine
(Credit "aminomethane")
(iii)

M1 arrow to show breakage of $\mathrm{C}-\mathrm{Br}$ bond

M2 arrow from lone pair on N of NH_{3} to form bond with C

M4 arrow from bond of $\mathrm{N}-\mathrm{H}$ to N atom of $\mathrm{CH}_{3} \stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$ (Ignore partial charges on haloalkane but penalise if incorrect)
(Accept $\mathrm{CH}_{3} \stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$ for M3)
(Full credit for carbocation mechanism; M1 for $\mathrm{C}-\mathrm{Br}$ bond breakage and M2 for lone pair attack on carbocation)
(Second mole of ammonia not essential to mechanism for full credit)

M7. (a) $\quad F_{2} \rightarrow 2 F$.
$\mathrm{CH}_{4}+\mathrm{F} \cdot \rightarrow \cdot \mathrm{CH}_{3}+\mathrm{HF}$
$\cdot \mathrm{CH}_{3}+\mathrm{F}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{F} \cdot$ 1

- $\mathrm{CH}_{3}+\mathrm{F} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{~F}$

OR 2• $\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
(allow credit on this occasion for $2 F_{\bullet} \rightarrow F_{2}$)
(penalise incorrect symbol FI, once only)
(penalise absence of radical dot once only)
(b) $\mathrm{CH}_{3} \mathrm{~F}+3 \mathrm{~F}_{2} \rightarrow \mathrm{CF}_{4}+3 \mathrm{HF}$

