Q1.	(a) CH₃(Dichloromethane, CH ₂ Cl ₂ , is one of the products formed when chloromethane, CI, reacts with chlorine.	
	(i)	Name the type of mechanism involved in this reaction and write an equation for each of the steps named below.	
		Name of type of mechanism	
		Initiation step	
		First propagation step	
		Second propagation step	
	(ii)	Write an overall equation for the formation of dichloromethane from chloromethane.	
			(5)
(k		compound contains 10.1% carbon and 89.9% chlorine by mass. Calculate the ecular formula of this compound, given that its relative molecular mass (M_r) is 0	
			(3)
(0		gest the formulae of two bromine-containing organic compounds formed when omomethane, CH ₂ Br ₂ , reacts with bromine.	
	Con	npound 1	

Compound 2

Q2.Which one of the following types of reaction mechanism is **not** involved in the above sequence?

$$CH_3CH_2CH_3 \longrightarrow (CH_3)_2CHCI \longrightarrow (CH_3)_2CHCN$$

↓

$$(CH_3)_2CHCH_2NHCOCH_3$$
 \leftarrow $(CH_3)_2CHCH_2NH_2$

- A free-radical substitution
- **B** nucleophilic substitution
- **C** elimination
- **D** nucleophilic addition-elimination

(Total 1 mark)

(2)

- **Q3.** When chlorine reacts with trichloromethane, tetrachloromethane, CCl₄, is formed.
 - (a) (i) Write the overall equation for this reaction.

.....

(ii) State **one** essential condition for this reaction.

.....

(b) The mechanism for the chlorination of trichloromethane is free-radical substitution,

		ich proceeds by a series of steps. Write equations for the steps named be chlorination.	pelow in
	Ini	tiation step	
	Fir	st propagation step	
	Se	cond propagation step	
	 A t	termination step	
			(4) (Total 6 marks)
Q4.	is similar	orination of ethane follows a free-radical substitution mechanism. This m to that which occurs when methane is chlorinated. The overall equation of ethane to form chloroethane is given below.	
		$C_2H_6 + CI_2 \longrightarrow C_2H_5CI + HCI$	
		e conditions and outline a mechanism for this reaction. Show how butane n this reaction.	e can be
	iormed ii	it this reaction.	(Total 5 marks)
Q5.	(a)	Chloromethane can be made by the reaction of chlorine with methane	
	(i)	Give one essential condition for this reaction.	
	(ii)	Name the mechanism for this reaction.	

(i	iii)	Further substitution can occur during this reaction. Identify the main organic product when a large excess of chlorine is used in this reaction.
E	Etha	nenitrile can be made by reacting chloromethane with potassium cyanide.
(i	i)	Write an equation for this reaction.
(i	ii)	Name the mechanism for this reaction.
(i	iii)	Explain, in terms of bond enthalpies, why bromomethane reacts faster than chloromethane with potassium cyanide.
		nenitrile can be hydrolysed to a carboxylic acid by heating it under reflux with a e acid. Identify the carboxylic acid formed in this reaction.

What feature of the chloromethane molecule makes it susceptible to attack by

(i)

		an ammonia molecule?
	(ii)	Name the amine produced in this reaction.
	(iii)	Outline a mechanism for this reaction.
		(6) (Total 13 marks)
Q 6.	(a)	Bromomethane, CH₃Br, can be formed by a reaction between bromine and
Ψ0.	meth	nane.
	of me	mechanism for this reaction is similar to the mechanism for the chlorination ethane.
	(i)	Name the mechanism for this reaction.

	(11)	Give the name of, and state an essential condition for, the first step in the mechanism for this reaction.	
		Name	
		Essential condition	
	(iii)	Write an equation for a termination step in the mechanism for this reaction which gives ethane as a product.	
	(iv)	Bromomethane can undergo further substitution. Write an overall equation for the reaction between bromomethane and bromine in which dibromomethane is formed.	
			(5)
(b)		momethane reacts with the nucleophile ammonia according to the following ation.	
	CH₃E	$Br + 2NH_3 \rightarrow CH_3NH_2 + NH_4Br$	
	(i)	Explain what is meant by the term <i>nucleophile</i> .	

		(11)	Name the organic product of this reaction.
		(iii)	Outline a mechanism for this reaction.
		()	Culine a modification for the reaction.
			(6) (Total 11 marks)
			(Total 11 marks)
Q7.			echanism for the reaction of methane with fluorine is a free-radical substitution ne chlorination of methane.
	(a)	Outli fluorii	ne the following steps in the mechanism for the reaction of methane with ne to form fluoromethane, CH₃F
		Initia	tion step
		First	propagation step
		Seco	nd propagation step

	A termination step	
		(4)
,, <u>,</u>		
(b)	Write an overall equation for the reaction of fluorine with fluoromethane to form tetrafluoromethane.	
	tetrandorometriane.	
	(Total 5 ma	(1) arks)