M1. (a)	Wear plastic gloves:	
	Essential – to prevent contamination from the hands to the plate	1
	Add developing solvent to a depth of not more than 1 cm ³ :	
	Essential – if the solvent is too deep it will dissolve the mixture from the plate	1
	Allow the solvent to rise up the plate to the top:	
	Not essential – the $R_{\mbox{\tiny f}}$ value can be calculated if the solvent front does not reach the top of the plate	1
	Allow the plate to dry in a fume cupboard:	
	Essential – the solvent is toxic Allow hazardous	1
(b)	Spray with developing agent or use UV	1
	Measure distances from initial pencil line to the spots (x)	1
	Measure distance from initial pencil line to solvent front line (y)	1
	R_f value = x / y	1

(c) Amino acids have different polarities 1 Therefore, have different retention on the stationary phase or different solubility in the developing solvent **M2.**(a) If 2 stage test for one compound, award no marks for that compound, eg no mark for ROH or RX to alkene then Br₂ test. If reagent is wrong or missing, no mark for that test; if wrong but close/incomplete, lose reagent mark but can award for correct observation. In each test, penalise each example of wrong chemistry, eg AgClr₂ propan-1-ol acidifiedpotassiumdichromate sodium Named acid + conc H₂SO₄ named acyl chloride PCI₅ M1 (orange) turns green

effervescence

Sweet smell

Sweet smell /misty fumes

Misty fumes

M2

1

[10]

propanal

add Tollens or Fehlings / Benedicts

Bradys or 2,4-dnph <i>if dichromate us</i>	ed for alcohol cannot be used for alc	dehyde	
		M3	1
Tollens: silver mirror o	or Fehlings/ Benedicts: red ppt		
(orange) turns green			
Yellow or orange ppt			
		M4	1
propanoic acid			
Named carbonate/ hy	drogencarbonate		
water and UI (paper)			
Named alcohol + cond	C H ₂ SO ₄		
sodium or magnesium	1		
PCI ₅			
if sodium used f	or alcohol cannot be used for acid		
		M5	1
effervescence			
orange/red			
Sweet smell			
effervescence			
Misty fumes if PCI₅ used for a	alcohol cannot be used for acid		
		M6	1

a cidified potassium dichromate

	1-chioro propane		
	NaOH then acidified AgNO₃		
	AgNO₃ If acidification missed after NaOH,no mark here but a mark for observation	allow	
		M7	1
	white ppt		
	white ppt		
		M8	1
(b)	oxidation (of alcohol by oxygen in air)		
		M1	1
	absorption at 1680 -1750 (due to C=O) Must refer to the spectrum		
		M2	1
	comparison of polarity of molecules or correct imf statement:propanone is less polar OR propan-2-ol is more polarOR propanone has dipole-dipole forcesOR propan-2-ol has hydrogen bonding		
		M3	1
	about attraction to stationary phase or solubility in moving phasePropan-2-ol has greater affinity for stationary phase or vice versaOR propanone is more soluble in solvent/moving phase or vice versa		
		M4	

[12]

M3. (a) 3-hydroxypropanoic acid

allow 3-hydroxypropionic acid must be correct spelling

(b) (i) must show trailing bonds

or can start at any point in the sequence, e.g.

not allow dimer

allow -O-CH2CH2COOCH2CH2CO-

or -CH2CH2COOCH2CH2COO-

ignore () or n

NB answer has a total of 6 carbons and 4 oxygens

1

1

1

1

(ii) condensation (polymerisation)

Allow close spelling

(c) (i) C=C or carbon-carbon double bond

(ii)

must show ALL bonds including O-H

(iii) must show trailing bonds

allow polyalkene conseq on their c(ii) ignore n

1

(d)

allow NH₃⁺ allow COO⁻

1

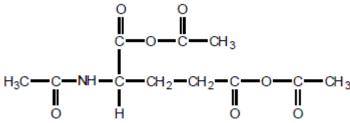
(e) (i)

In (e), do not penalise a slip in the number of carbons in the -CH₂CH₂- chain, but all must be bonded correctly NB two carboxylate groups
Allow COONa or COO- Na+ but not covalent bond to Na allow NH₂-

1

(ii)

OR


In (e), do not penalise a slip in the number of carbons in the -CH₂CH₂- chain, but all must be bonded correctly NB two ester groups

allow NH₂- or ⁺NH₃-

1

(iii)

In 4(e), do not penalise a slip in the number of carbons in the $-CH_2CH_2$ - chain, but all must be bonded correctly allow anhydride formation on either or both COOH groups (see below) with or without amide group formation

1

- (f) **M1** phase or eluent or solvent (or named solvent) is moving or mobile
 - M2 stationary phase or solid or alumina/silica/resin

1

1

M3 separation depends on balance between solubility or affinity (of compounds) in each phase

OR

different adsorption or retention

OR

(amino acids have) different R_r values

ÒR

(amino acids) travel at different speeds or take different times

[13]

1

1

1

1

M4.(a) 2,6-diaminohexanoic acid

Ignore additional, or – or spaces.

(b) (i)

(ii)

$$^{+}_{3}N(CH_{2})_{4}-C-COOH$$
 $^{+}_{N}NH_{3}$ (2Cl⁻)

NB both N must be protonated.

Allow $\neg NH_3^+$ allow CO_2H Allow \neg^+H_3N .

Penalise – C_4H_8 – here.

$$H_2N(CH_2)_4$$
 $-C$
 $-COO$
 NH_2
 (Na^+)

Allow CO₂-.

Allow -H₂N.

Allow -COONa but penalise O-Na bond shown.

(iii) H $H_2N(CH_2)_4$ -C $-COOCH_3$

Allow CO₂CH₃.

Allow $-NH_3^+$ or $-H_2N$.

(c)
$$\begin{bmatrix} CH_3 \\ H-C-COOH \\ NH_2 \end{bmatrix} + \bullet \qquad H-C-H \\ H-C+ \qquad + COOH$$

1 for displayed formula of fragment ion.

1 for molecular ion of alanine AND radical.

Allow molecular ion without brackets and fragment ion in brackets with outside +.

Allow dot anywhere on radical.

Allow $[C_3H_7NO_2]^{-1}$ for molecular ion.

2

OR

OR

Dipeptide, not repeating unit /.

Allow CO₂H Allow -H₂N.

Allow -CONH-.

1

(e) M1 In acid lysine has double positive or more positive charge

1

M2 (Lysine ion) has greater affinity / g sticks better to polar / stationary p M2 only scores after a correct Ignore greater retention time.	hase
M5.(a) (i) Two rings only around nitrogen or sulfing Lose this mark if more than 2 and Do not allow two atoms at the second seco	atoms are ringed.
(ii) 275.8 Accept this answer only. Do no	ot allow 276
(iii) Carboxylate / COO ⁻ Allow salt of carboxylic acid or	just carboxylic acid. 1
(b) (32.1 / 102.1) = 31.4% Do not penalise precision but of figure.	do not allow 1 significant
(c) Zineb is mixed with a <u>solvent / water</u> Max=2 if M1 missed	1
Use of column / paper / TLC Lose M1 and M2 for GLC	1
Appropriate collection of the ETU fraction OR Appropriate method of detecting ETU Allow ETU is an early fraction in	in a column or collecting a

[9]

range of samples over time, lowest retention time / travels furthest on paper or TLC (allow 1 mark for having the longest retention time in GLC).

1

1

Method of identification of ETU (by <u>comparison</u> with standard using chromatography)

If method completely inappropriate, only M1 is accessible

[8]