M1.(a) As concentration increases the amount of heat given out increases / temperature increases (M1)

Any order.
Ignore references to an exothermic reaction.

More successful collisions or reactions in a given time OR more particles have the activation energy (M2)

Allow could be a second / $n^{\text {th }}$ order reaction.
(An increase in temperature or more heat given out) increases the rate of a reaction (M3)
(b) The magnesium is coated with an oxide / MgO (M1)

Allow magnesium hydroxide.

MgO / the coating / the corrosion product has to be removed before Mg will react
OR Mg and $\mathrm{MgO} /$ the coating / the corrosion product react at different rates OR Initially MgO / the coating / the corrosion product reacts not Mg (M2)

Ignore inert coating.
(c) Any two from:

Any order.
Slower with hot water or faster with steam
The hot water produces $\mathrm{Mg}(\mathrm{OH})_{2}$ / the hydroxide OR steam produces MgO / the oxide
(Slow) bubbling with hot water OR bright white light / flame / white solid with steam
(d) Magnesium sulfate is soluble and calcium sulfate is insoluble / slightly soluble / magnesium sulfate is more soluble / calcium sulfate is less soluble / correct trend in solubility (M1)

Any order.
M1 requires a comparison of the two solubilities.
Calcium sulfate coats the surface of the calcium (M2)
Coating prevents further contact with / reaction by the acid (M3)
‘Calcium sulfate forms a protective coating' scores M2 only.

M2.(a) (i) Change in concentration (of a substance / reactant / product) in unit time / given time / per (specified) unit of time

This may be written mathematically OR may refer to the gradient of a graph of concentration / volume against time

OR

Amount of substance formed / used up in unit time / given time / per (specified) unit of time

Ignore additional information including reference to collisions
(ii) At W

M1 (QoL)
The rate / it is zero
M2
The magnesium has all reacted / has been used up
Ignore reference to the acid being used up

OR

No more collisions possible between acid and Mg
OR
Reaction is complete / it has stopped

OR

No more hydrogen / product is produced
(iii) M1

Twice / double as many particles / hydrogen ions (in a given volume)
Penalise reference to (hydrochloric acid) molecules in M1
Penalise reference to "HCl particles" in M1

OR

Twice / double as much hydrochloric acid
M2
Twice / double as many effective / successful collisions (in a given time)

OR

Twice / double as many collisions with either sufficient energy to react $O \boldsymbol{R}$ with $\mathrm{E} \geq \mathrm{E}_{\text {a }}$

OR
double the successful / effective collision frequency
(b) (i) The activation energy is the minimum energy for a reaction to go / start OR

Minimum energy for a successful/ effective collision
(c) (i) $\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
$\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}+\mathrm{H}_{2}$
Allow multiples
Ignore state symbols
(ii) $\mathrm{M} 1 \quad \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \longrightarrow \mathrm{BaSO}_{4}$

Ignore state symbols in M1
Not multiples in M1
M2 White precipitate / solid
Extra ions must be cancelled
Penalise contradictory observations in M2
(iii) M1 Barium meal / barium swallow / barium enema

Accept a correct reference to M1 written in the explanation in M2, unless contradictory

OR used in X-rays OR to block X-rays OR X-ray contrast medium OR CT scans
$\mathrm{M} 2 \quad \mathrm{BaSO}_{4} /$ barium sulfate is insoluble (and therefore not toxic)
For M2 NOT barium ions
NOT barium
NOT barium meal and NOT "It" Ignore radio-tracing

M3.(a) (If any factor is changed which affects an equilibrium), the (position of) equilibrium will shift / move so as to oppose / counteract the change.

Must refer to equilibrium
Ignore reference to "system" alone
A variety of wording will be seen here and the key part is the last phrase

OR

(When a system / reaction in equilibrium is disturbed), the (position of) equilibrium shifts / moves in a direction which tends to reduce the disturbance

An alternative to shift / move would be the idea of changing / altering the position of equilibrium
(b) (i) M1

A substance that speeds up the reaction / alters the rate but is chemically
unchanged at the end / not used up
Both ideas needed for M1
Credit can score for M1, M2 and M3 from anywhere within the answer
M2
Catalysts provide an alternative route / alternative pathway / different mechanism
M3
that has a lower activation energy / E_{a}

OR

lowers the activation energy / E_{a}
(ii) (Time is) less / shorter / decreases / reduces

Credit "faster", "speeds up", "quicker" or words to this effect
(iii) None
(c) (i) R
(ii) T
(iii) R
(iv) P
(v) Q

M4. (a) Award in either order for curve
"Steeper" requires line to be on the left of the original line, starting from the origin

M1 curve is steeper than original and starts at the origin
M2 curve levels at the top line on the graph
(b) Award in either order for curve
"Shallower" requires line to be on the right of the original line, starting from the origin

M1 curve is shallower than original and starts at the origin
M2 curve levels at the first line on the graph
(c) M1 curve would be steeper than original
"Steeper" requires line to be on the left of the original line, starting from the origin

M2 curve levels at the same original volume of O_{2}
(d) M1 The (concentration / amount of) ${\underline{\mathrm{H}_{2}} \mathrm{O}_{2} \text { or reactant falls / decreases / used up }}^{\text {(d) }}$ Mark independently

OR
The number of $\underline{\mathrm{H}}_{2} \mathrm{O}_{2}$ or reactant molecules/ particles falls / decreases
M2
The rate of reaction / rate of decomposition / rate of formation of oxygen / frequency of collisions / (effective) collisions in a given time decreases / is slower
(e) (i) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Ignore state symbols
Accept only this equation or its multiples
(ii) hydrogen bromide / it does not appear in the overall equation OR
hydrogen bromide / it is not used up in the reaction / unchanged at the end of the reaction

OR

hydrogen bromide / it is regenerated / re-formed (in Step 2)

