M1.(a) $q=500 \times 4.18 \times 40$
Do not penalise precision.
$=83600 \mathrm{~J}$
Accept this answer only.
Ignore conversion to 83.6 kJ if 83600 J shown.
Unit not required but penalise if wrong unit given.
Ignore the sign of the heat change.
An answer of 83.6 with no working scores one mark only.
An answer of 83600 with no working scores both marks.
(d) Container splitting and releasing irritant / corrosive chemicals Must have reference to both aspects; splitting or leaking (can be implied such as contact with body / hands) and hazardous chemicals.

Allow 'burns skin / hands' as covering both points
Ignore any reference to 'harmful'.
Do not allow 'toxic'.
(e) (i) $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$

Allow fractions / multiples in equation.
Ignore state symbols.
(ii) Iron powder particle size could be increased / surface area lessened

Decrease in particle size, chemical error $=0 / 3$
Change in oxygen, chemical error $=0 / 3$

Not all the iron reacts / less reaction / not all energy released / slower release of energy / lower rate of reaction

Mark points M2 and M3 independently.

Correct consequence of M2
An appropriate consequence, for example

- too slow to warm the pouch effectively
- lower temperature reached
- waste of materials
(f) (i) Conserves resources / fewer disposal problems / less use of landfill / fewer waste products

Must give a specific point.
Do not allow 'does not need to be thrown away' without qualification.
Do not accept 'no waste'.
(ii) Heat to / or above $80^{\circ} \mathrm{C}$ (to allow thiosulfate to redissolve)

Accept 'heat in boiling water'.
If steps are transposed, max 1 mark.

Allow to cool before using again

Reference to crystallisation here loses this mark.

M2.(a) Number / proportion / percentage / fraction of molecules Ignore "particles"
(b) None $O \boldsymbol{R}$ no effect $O \boldsymbol{R}$ no change
(c) X
(d) Answers in either order

M1 collision OR collide
Mark independently
M2 collision / molecules / particles
Ignore "correct" amount of energy
with the activation energy
$O R$ with $E \geq E_{\text {at }}$
OR with sufficient/enough energy
$\boldsymbol{O R}$ with the minimum energy
$\mathbf{O R}$ with the correct orientation
(e) A small increase in temperature results in many more / much higher proportion of / a lot more / significantly more molecules / particles / collisions with E $\geq \mathrm{E}_{\text {ad }}$ / energy greater than the activation energy / sufficient energy / enough energy / minimum energy to react
(compared with a small increase in concentration)
Not just "more molecules with $E \geq E_{\text {act }}$ " The answer must convey that the increase is significant Accept reference to "atoms", "molecules", "particles" Ignore "species"

M3. (a) M1 The activation energy is the minimum / least / lowest energy Mark independently Ignore "heat" and ignore "enthalpy"

M2 (energy) for a reaction to occur / to go / to start
OR (energy) for a successful / effective collision Ignore "breaking the bonds"
(b) M1 Catalysts provide an alternative route OR an alternative mechanism OR alternative / different path(way)

M2 Lowers the activation energy
Mark independently
Ignore reference to "surface"
(c) (i) Stay(s) the same
(ii) Increases

Credit "increase" or "increased"
(iii) Increases

Credit "increase" or "increased"
(iv) Stay(s) the same
(d) (i) M1 yeast or zymase

M2 ethanol

Ignore "enzyme"
In M2, ignore "alcohol" and ignore any formula
(ii) M1 (Concentrated) $\mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{OR}$ (Concentrated) $\mathrm{H}_{2} \mathrm{SO}_{4}$

M2 butan-2-ol
Credit correct names
Ignore "hydrogenphosphate or hydrogensulfate"
Ignore "dilute" or "aq"
Do not penalise absence of hyphens in name.
In M2, ignore any formula

M4. (a) Equation $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$

$$
\Delta H f=[(945 \times 0.5)+(426 \times 1.5)]-(391 \times 3)
$$

$$
=-46.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Mark Range	The marking scheme for this part of the question includes an overall assessment for the Quality of Written Communication (QWC). There are no discrete marks for the assessment of QWC but the candidates' QWC in this answer will be one of the criteria used to assign a level and award the marks for this part of the question Descriptor an answer will be expected to meet most of the criteria in the level descriptor
4-5	claims supported by an appropriate range of evidence good use of information or ideas about chemistry, going beyond those given in the question argument well structured with minimal repetition or irrelevant

	points accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling
$2-3$	-claims partially supported by evidence good use of information or ideas about chemistry given in the question but limited beyond this the argument shows some attempt at structure
the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling	
	valid points but not clearly linked to an argument structure limited use of information or ideas about chemistry unstructured errors in spelling, punctuation and grammar or lack of fluency

(b) The higher the temperature the faster the reaction QWC
but, since the reaction is exothermic
the equilibrium yield is lower QWC

The higher the pressure the greater the equilibrium yield QWC
because there is a reduction in the number of moles of gas in the reaction
but higher pressure is expensive to produce or plant is more expensive to build QWC

A better catalyst would lessen the time to reach equilibrium
and allow more ammonia to be produced in a given time QWC

M5. (a) Sulfur OR S OR S8
Sulphur
(b) M1 The activation energy is the minimum / least / lowest Mark these independently

M2 Energy for a reaction to occur / to go / to start OR
Energy for a successful / effective collision
(c) Explanation:

M1 Twice as many / double number of particles M1 NOT molecules

M2 More / twice / double (effective) collisions (in a given time)
Double / greater / increased collision frequency
(d) (i) (Measured) change in concentration (of a substance) in unit time / given time

May be written mathematically
OR the gradient of the concentration (against) time
(ii) The measured change / amount (of precipitate) / cloudiness is fixed or constant or unchanged

