M1. (a) (i) $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}} / \mathrm{C}_{\mathrm{x}} \mathrm{H}_{2 \mathrm{x}}$
(ii) Fractional distillation / GLC / gas liquid chromatography / fractionation Do not allow cracking / distillation
(b) (i) But-1-ene / but1ene

Ignore hyphens and commas
Do not allow butene-1 / but-2-ene / butane / butane /alkene /
$\mathrm{C}_{4} \mathrm{H}_{8}$ / propene / straight-chain alkene
(ii) A structure of cyclobutane or methyl-cyclopropane

Allow skeletal formula.
(c) (i) $\mathrm{C}_{15} \mathrm{H}_{32} \rightarrow 2 \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{C}_{7} \mathrm{H}_{16}$

Do not accept multiples.
(ii) Thermal cracking Not catalytic cracking or cracking.

To produce products that are in greater demand / more valuable / more expensive / more profitable

The (unsaturated) alkene or the (unsaturated) molecule or X produced can be polymerised or can be made into plastics. Ignore more useful products.
(iii) Break ($\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{H}$) bonds

Allow to overcome the activation energy.
Allow to break the carbon chain.
Penalise breaking wrong bonds.
(d) (i) \underline{H}_{2}

Only.
(ii) Fuel / LPG

Allow camping gas, lighter fuel, propellant, refrigerant, cordless appliances.
Do not allow petrol or motor fuel.
Ignore natural gas.
(iii) $\mathrm{C}_{4} \mathrm{H}_{10}+2.5 \mathrm{O}_{2} \rightarrow 4 \mathrm{C}+5 \mathrm{H}_{2} \mathrm{O}$

Accept multiples.
(iv) $\mathrm{SO}^{2} /$ sulfur dioxide

If other sulfur oxides, mark on.

Calcium oxide / CaO / lime / quicklime
Allow CaCO_{3} / allow $\mathrm{Ca}(\mathrm{OH})_{2}$ or names.
Allow any solid base.
M2 dependent on M1.
Do not allow limewater.
(v) Neutralisation

Allow acid-base reaction.
Allow flue gas desulfurisation / FGD
(e) (Molecules) are similar sizes / have similar $M_{r} /$ have similar number of electrons

Chemical error CE $=0 / 2$ if breaking bonds.
Allow similar number of carbon and hydrogen atoms / similar surface area / similar chain length.
Can accept same number of carbon atoms.
Do not accept same number of H atoms / same number of bonds.
Ignore similar amount of bonds.

Similar van der Waals forces between molecules / similar intermolecular forces

 (IMF)Not similar incorrect IMF eg dipole-dipole

M2. (a) (i) M1 (could be scored by a correct mathematical expression which. must have
all ΔH symbols and the \sum or SUM)

```
M1 }\quad|\mp@subsup{H}{r}{}=\Sigma\Delta\mp@subsup{H}{f}{\prime}(\mathrm{ products) - }\Sigma\Delta\mp@subsup{H}{f}{\prime}\mathrm{ (reactants)
```

OR a correct cycle of balanced equations with $1 \mathrm{C}, 3 \mathrm{H}_{2}$ and $1 \mathrm{O}_{2}$
M2 $\quad \underline{\Delta H_{t}}=-201+(-242)-(-394)$
$\Delta H_{t}=-201-242+394$
$\Delta H_{t}=-443+394$
(This also scores M1)
M3 $=-49\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(Award 1 mark ONLY for + 49)
Correct answer gains full marks
Credit 1 mark ONLY for $+49\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either correct cycle of balanced equations with $1 \mathrm{C}, 3 \mathrm{H}_{2}$ and $1 \mathrm{O}_{2}$

OR a clear statement of M1 which could be in words
and scores only M1
(ii) It is an element / elemental

Ignore reference to "standard state"
OR
By definition
(b) M1 (The yield) increases / goes up / gets more

If M1 is given as "decreases"/ "no effect" / "no change" then CE $=0$ for clip, but mark on only M2 and M3 from a blank M1

> M2 There are more moles / molecules (of gas) on the left / of reactants
> OR fewer moles / molecules (of gas) on the right
> / products
> OR there are 4 moles /molecules (of gas) on the left and 2 moles / molecules on the right.
> OR (equilibrium) shifts / moves to the side with less moles / molecules Ignore "volumes", "particles" "atoms" and "species" for M2

M3: Can only score M3 if M2 is correct

The (position of) equilibrium shifts / moves (from left to right) to oppose the increase in pressure

For M3, not simply "to oppose the change"
For M3 credit the equilibrium shifts / moves (to right) to lower
/decrease the pressure
(There must be a specific reference to the change that is opposed)
(c) M1 Yield increases goes up

M2 The (forward) reaction / to the right is endothermic OR takes in/ absorbs heat

OR
The reverse reaction / to the left is exothermic OR gives out / releases heat
If M1 is given as "decrease" / "no effect"/ "no change" then CE= 0 for clip, but mark on only M2 and M3 from a blank M1

Can only score M3 if M2 is correct

M3 The (position of) equilibrium shifts / moves (from left to right) to oppose the increase
in temperature (QoL)

For M3, not simply "to oppose the change"
For M3, credit the (position of) equilibrium shifts / moves (QoL)
to absorb the heat OR
to cool the reaction OR
to lower the temperature
(There must be a specific reference to the change that is opposed)
(d) (i) An activity which has no net / overall (annual) carbon emissions to the atmosphere OR
An activity which has no net / overall (annual) greenhouse gas emissions to the atmosphere.
OR
There is no change in the total amount / level of carbon dioxide $/ \mathrm{CO}_{2}$ carbon /greenhouse gas present in the atmosphere.

The idea that the carbon $/ \mathrm{CO}_{2}$ given out equals the carbon $/ \mathrm{CO}_{2}$ that was taken in from the atmosphere
(ii) $\mathrm{CH}_{3} \mathrm{OH}+1 \frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Ignore state symbols
Accept multiples
1
(iii) $3 \mathrm{H}_{2}+1 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 3 \mathrm{H}_{2} \mathrm{O}$

Ignore state symbols
OR
Accept multiples
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Extra species must be crossed through
(e) M1 $\mathrm{q}=\mathrm{m} \mathrm{c} \Delta \mathrm{T}$

Award full marks for correct answer Ignore the case for each letter

OR
$q=140 \times 4.18 \times 7.5$
M2 $=4389(\mathrm{~J})$ OR $4.389(\mathrm{~kJ})$ OR $4.39(\mathrm{~kJ})$ OR $4.4(\mathrm{~kJ})$ (also scores M1)

M3 Using 0.0110 mol
therefore $\Delta \mathrm{H}=\underline{-399}\left(\mathrm{kJmol}^{-1}\right)$
OR-400
Penalise M3 ONLY if correct numerical answer but sign is incorrect; +399 gains 2 marks
Penalise M2 for arithmetic error and mark on
In M1, do not penalise incorrect cases in the formula
If $\Delta T=280.5$; score $q=m c \Delta T$ only
If $c=4.81$ (leads to 5050.5) penalise M2 ONLY and mark on for M3 = - 459
+399 or +400 gains 2 marks
Ignore incorrect units

M3. (a) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Accept multiples
Ignore state symbols even if incorrect

Not enough oxygen / air

CMM / methane is a greenhouse gas / contributes to global warming

Do not allow formation of $\mathrm{CO}_{2} / \mathrm{CO}_{2}$ is a greenhouse gas
Apply list principle, eg
CH_{4} is a greenhouse gas and toxic $=0$
CH_{4} is a greenhouse gas and damages ozone $=0$
Allow CH_{4} and CO_{2} are greenhouses gases
Allow collect to use as a fuel so fossil fuels do not run out (as quickly)
(b) $\mathrm{CH}_{3} \mathrm{SH}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$

Accept multiples
Ignore state symbols even if incorrect

Calcium oxide is basic (and SO_{2} is acidic) /
CaO neutralises $\mathrm{SO}_{2} /$

CaO reacts with SO_{2} to form gypsum / salt / solid /
$\mathrm{CaSO}_{4} / \mathrm{CaSO}_{3}$
Allow $\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3}$

M2 and M3 can only be scored if SO_{2} seen somewhere in the answer

Acid rain
Allow consequence of acid rain eg increased rusting of iron / fish in lakes die / problems for asthmatics
Apply list principle Ignore air pollution

M4. (a) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
Allow x in place of n
(b)

Chain
Must show every bond
Allow branched chain
(c) $\mathrm{C}_{9} \mathrm{H}_{20}$

Only
To break the (C-C and/or C-H) bonds
M2 $=0$ if break $C=C$
To make products which are in greater demand / higher value / make alkenes
Not more useful products
Allow specific answers relating to question
(d) $\mathrm{C}_{5} \mathrm{H}_{12}+3 \mathrm{O}_{2} \rightarrow 5 \mathrm{C}+6 \mathrm{H}_{2} \mathrm{O}$
Allow other balanced equations which give C and $\mathrm{CO} / \mathrm{CO}_{2}$
Causes global dimming / exacerbates asthma / causes breathing problems / makes visibility poor / smog
Apply list principle
Ignore causes cancer/toxic
(e) $\frac{106.5}{143}(\times 100)$
74.48\%
Allow 74.5\%
1
3

> Only
(f) 2,3-dichloro-3-methylpentane
$\underline{C}_{3} \mathrm{H}_{6} \mathrm{Cl}$
Only

1

M5.(a) (i) $\mathrm{C}_{8} \mathrm{H}_{18}+8 \overline{2} \quad \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$
(ii) Not enough oxygen or air (available for complete combustion) /lack of oxygen or air / too much octane

Ignore poor ventilation, low temp, poor mixing, incomplete combustion
(b) (i) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$

Allow multiples
(ii) $\mathrm{Pt} / \mathrm{Pd} / \mathrm{Rh} /$ Ir or names

Apply list principle

Big(ger) surface area / increased reaction rate / removes more of the gases /ensures complete reaction

Allow (ceramic) withstands high temperatures
(c) (i) Acid rain

Allow consequence of acid rain
Ignore greenhouse gas / global warming / ozone
(ii) $\mathrm{CaO} /$ lime $/ \mathrm{CaCO}_{3}$ /limestone

Allow chemical names

Neutralises the gas or words to that effect/it is basic/ SO_{2} is acidic
Allow 'reacts with it' or 'it is alkaline'

