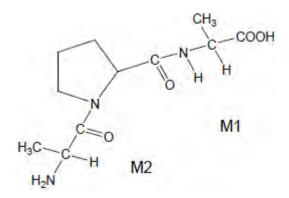

M1.(a) (i)

Allow CO₂ and NH₂ +

(ii) NOTE - Two marks for this clip


M1 for alanine section bonded through N M2 for alanine section bonded through C But penalise error in proline ring 1

1

1

1

1

Allow MAX 1 for correct tripeptide in polymer structure

(b) (i) <u>3-methylpent-2-ene</u>

Ignore E-Z, commas, spaces or missing hyphens

(ii) 4-amino-3-methylbutanoic acid

Ignore commas, spaces or missing hyphens

or any polyamide section containing

Page 3

8 carbons plus two C=O plus two N-H, such as

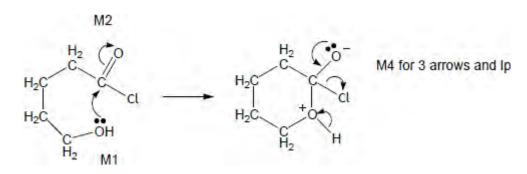
$$\begin{array}{c|c} -C & CH_2 \\ \downarrow & CH_2 \\ \downarrow & \downarrow & CH_2 \\ \downarrow & \downarrow & CH_2 \\ \downarrow & \downarrow & H \\ \end{array}$$

Trailing bonds are required

(iv) Non polar OR no polar groups / bonds (for attack by water / acids / alkalis / nucleophiles or for hydrolysis)

C-C bonds are strong

[7]


1

1

M2.(a) (i) (nucleophilic) <u>addition-elimination</u>

Not electrophilic addition-elimination Ignore esterification

1

M3 for structure

- If wrong nucleophile used or O–H broken in first step, can only score M2.
- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than δ + on C=O loses M2.
- If CI lost with C=O breaking lose M2.
- M3 for correct structure <u>with charges</u> but lone pair on O is part of M4.
- Only allow M4 after correct / very close M3.
- Ignore HCl shown as a product.

a 20-50 (ppm) or single value or range entirely within this range If values not specified as a or b then assume first is a.

1

1

1

1

1

b 50-90 (ppm) or single value or range entirely within this range

Must have trailing bonds, but ignore n.

one unit only

Condensation

(b)

_	Acidified potassium dichromate
---	--------------------------------

Penalise wrong formula for Tollens or missing acid with potassium dichromate but mark on.

	No reaction / no (visible) change / no silver mirror		No reaction / no (visible) change / stays orange / does not turn green
--	--	--	--

Ignore 'clear', 'nothing'.

Penalise wrong starting colour for dichromate.

κ	Silver <u>mirror</u> / grey <u>ppt</u>	Red <u>ppt</u>	(orange) turns green
	grey <u>ppt</u>	(allow brick red or red-orange)	

1

1

J Two (peaks)

Allow trough, peak, spike.

1

K Four (peaks)

Ignore details of splitting.

If values not specified as J or K then assume first is J.

1

(c) If all the structures are unlabelled, assume that the first drawn ester is L, the second ester is M; the first drawn acid is N, the second P. The cyclic compound should be obvious.

L ester

$$H_2C = C$$
 $C = C$
 CH_3
 $C = C$
 CH_3

OR $H_2C=C(CH_3)COOCH_3$

All C₅H₈O₂ L to P must have C=C.

Allow CH₃-.

Allow -CO₂CH₃ etc.

Allow CH₂C(CH₃)COOCH₃.

1

M

ester

CH₃CH=CHCH₂OOCH CH₃CH₂CH=CHOOCH Allow either E–Z isomer. Allow CH₃- or C₂H₅₋ but not CH₂CH₃-. Allow CH₃CHCHCOOCH₃ etc.

N acid

$$H_3C$$
 $C=C$ H $C=C$ CH_2COOH CH_2COOH CH_2CH_3 CH_2CH_3

 $(CH_3)_2C=CHCOOH$ $H_2C=C(CH_3)CH_2COOH$ $H_2C=C(COOH)CH_2C$ H_3

Allow CH₃- or C₂H₅₋ but not CH₂CH₃-.

Allow -CO₂H.

Not cyclic isomers.

Not the optically active isomer.

Allow (CH₃)₂CCHCOOH etc.

P acid

Allow -CO₂H.

CH₃CH(COOH)CH=CH₂
Allow CH₃CH(CO₂H)CHCH₂ or
CH₃CH(CO₂H)C₂H₃.

1

1

Not cyclic esters.

[19]

M3.(a) (i) 2-hydroxypropanoic acid

OR

2-hydroxypropan(-1-)oic acid

Do not penalise different or missing punctuation or extra spaces.

Spelling must be exact and order of letters and numbers as here.

Can ignore -1- before -oic, but penalise any other numbers here.

1

(ii)
$$C_{12}H_{22}O_{11} + H_2O \longrightarrow 4CH_3CH(OH)COOH$$

Allow $4C_3H_6O_3$

OR

$$C_{12}H_{22}O_{11} + H_2O \longrightarrow 2CH_3CH(OH)COOH + C_6H_{12}O_6$$

Allow $2C_3H_6O_3$

1

(b) (i) Nucleophilic addition

M4 for Ip, arrow and H+

$$CH_3$$
 CH_3
 CH_3

- M1 lp and minus must be on C
- M1 and M4 include lone pair and curly arrow.
- M2 not allowed independent of M1, but allow following some attempt at attack on carbonyl C
- · allow M1 for correct attack on C+
- + rather than δ+ on C=O loses M2
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow arrow in M4 to H of H-CN with arrow forming cyanide ion.
- (ii) Equal mixture of enantiomers / (optical) isomers
- (iii) (Plane) polarized light

 If missing no further mark.

(Polarised light) <u>rotated</u> by single enantiomer but unaffected by racemate

Both needed; not allow bend, twist etc.

- (c) (i) CH₃CH(OH)COOH + NaOH → CH₃CH(OH)COONa + H₂O
 OR CH₃CH(OH)COOH + OH⁻ → CH₃CH(OH)COO⁻ + H₂O

 Not ambiguous mol formulae for product must show
 COONa or CO₂Na or COO⁻ or CO₂⁻
 - (ii) $[H^+] = K_a OR pH = pK_a$

1

1

5

1

1

pH = 3.86

Allow more than 2 decimal places but not fewer.

1

(iii) M1 buffer

Ignore acidic but penalise alkaline or basic.

1

Any two out of the three marks M2, M3 & M4

M2 Large lactate concentration in buffer **OR** sodium lactate completely ionised

M3 added acid reacts with / is removed by lactate ion or A- or sodium lactate or salt

OR equation $H^+ + A^- \rightarrow HA$

Ignore reaction of H⁺ with OH⁻ Ignore reference to equilibrium unless it is shown.

M4 ratio [HA] / [A-] stays almost constant Ignore H- or pH remains constant.

Max 2

No marks if ester link missing

Correct ester link allow –COO–

NB Correct answer scores 2

Ignore n here (compare with (d)(iv). Ignore brackets

1

OR

All rest correct with trailing bonds

If OH or COOH on either or both ends, lose one, ie dimer scores 1

If more than two repeating units, lose 1

1

(ii) (Poly)ester ie allow ester

Not terylene.

Ignore spaces and brackets in answer.

1

(iii)

Allow any cyclic C₆H₈O₄

1

(iv)

Penalise n here (compare with (d)(i)

Ignore brackets.

Not allow Ph for phenyl.

1

(v) In landfill, no air or UV, to assist decay

OR not enough water or moisture (to hydrolyse polyester)

Allow landfill has / contains:

no or few bacteria / micro-organisms / enzymes compared with compost heap

OR less oxygen

OR lower temperature.

[22]

M4.D

[1]

1

1

1

1

1

M5.(a)

Addition

(b)

H H
I I
HO-C-C-OH
CH₃ CH₃

(c) **Q** is biodegradable

Polar C=O group or δ + C in **Q** (but not in **P**)

Therefore, can be attacked by nucleophiles (leading to breakdown)

[7]