M1.(a) (i)

$$H_2N$$
 CH_3
 CH_3
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_2N
 CH_2N
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_3
 CH

(ii)

Allow - NH₃+ and +NH₃₋

(iii) 2-amino-3-hydroxybutanoic acid

Ignore 1 in butan-1-oic acid

Do not penalise commas or missing hyphens Penalise other numbers

(iv)

Allow –NH₃+ and +NH₃-

1

1

1

1

(b) (i) Condensation

Allow polyester

(ii) propane-1,3-diol

Must have e

Allow 1,3-propanediol

(c) (i) Addition

Not additional

(ii)

Allow monomers drawn either way round Allow bond to F in CF₃

OR

1 for each structure within each pair

(d) c

If wrong, CE = 0

1

1

1

1

1

1

$$(CH_3CH_2) \longrightarrow CH_3CH_2 \longrightarrow CH_3CH_$$

M2.(a)methyl propanoate

(NO mark for name of mechanism)

- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than δ+ on C=O loses M2
- If CI lost with C=O breaking, max1 for M1
- M3 for correct structure with charges but Ip on
- O is part of M4
- only allow M4 after correct/very close M3
- ignore CI- removing H-

1

(b) (i) pentan<u>e-1,5</u>-diol

Second 'e' and numbers needed
Allow 1,5-pentanediol but this is not IUPAC name

Must show ALL bonds

1

(iii) All three marks are independent

M1 (base or alkaline) Hydrolysis (allow close spelling)

1

Allow (nucleophilic) addition-elimination or saponification

M2 δ + C in polyester

1

M3 reacts with OH- or hydroxide ion

1

Not reacts with NaOH

1

Allow CH3COOH or CH3CO2H

1

(ii) (nucleophilic) addition-elimination

Both addition and elimination needed and in that order

OR

(nucleophilic) addition followed by elimination

Do **not** allow electrophilic addition-elimination / esterification Ignore acylation

1

- (iii) any **two** from: ethanoic anhydride is
 - less corrosive
 - less vulnerable to hydrolysis
 - less dangerous to use,
 - less violent/exothermic/vigorous reaction OR more controllable rxn
 - does not produce toxic/corrosive/harmful fumes (of HCl) OR does not produce HCl
 - less volatile

NOT COST

List principle beyond two answers

1

1

1

Allow

(e) (i) ester

Do **not** allow ether Ignore functional group/linkage/bond

(ii) 12 or twelve (peaks)

(iii) 160 – 185

Allow a number or range within these limits Penalize extra ranges given Ignore units

(f)	(i) sulfuric acid	sodium hydroxide	√
	hydrochloric acid	ammonia	X or blank
	ethanoic acid	potassium hydroxide	✓
	nitric acid	methylamine	X or blank

4 correct scores 2 3 correct scores 1

1

(ii) Pink to colourless

Allow 'red' OR 'purple' OR 'magenta' instead of 'pink' Do **not** allow 'clear' instead of 'colourless'

[21]

M3. (a) (i)

Allow -CONH- or - COHN -

Mark two halves separately

lose 1 each for missing trailing bonds at one or both ends or error in peptide link or either or both of H or OH on ends

Not allow $-(C_6H_{12})$ –
Ignore n

1

1

(ii) M1 in polyamides - H bonding

1

M2 in polyalkenes - van der Waals forces

Penalise forces between atoms or van der Waals bonds

1

M3 Stronger forces (of attraction) in polyamides Or H bonding is stronger (must be a comparison of correct forces to score M3)

Do not award if refer to stronger bonds

1

(b) (i) (nucleophilic) addition elimination

Not allow N-H₂

M2 not allowed independent of **M1**, but allow **M1** for correct attack on C+

+ rather than $^{\delta}$ + on C=O loses M2

If CI lost with C=O breaking, max 1 for M1

M3 for correct structure with charges but

Ip on O is part of M4

only allow M4 after correct/ very close M3

For M4, ignore NH₃ removing H⁺ but lose

M4 for CI removing H⁺ in mechanism,

but ignore HCI as a product

4

(ii) N-methylpropanamide

Not N-methylpropaneamide

1

(c)

Allow -CONH- or -COHN-

1

(d) (i) <u>2-amino-3-hydroxypropanoic acid</u>

1

(ii)

Must be salts of aspartic acid

allow -CO₂-

allow NH₂-

1

(iii) Penalise use of aspartic acid once in d(iii) and d(iv)

(iv) Penalise use of aspartic acid once in d(iii) and d(iv)

allow –CO₂must show C-N bond don't penalize position of + on N(CH₃)₃

[16]

M4.(a) (i) (As a) soap

Allow washing, cleaning, degreasing, detergents

1

1

(ii) (Bio)diesel or biofuel or fuel for cars/lorries

Allow to make soap

1

(iii) (Cationic) surfactant /detergent /fabric softener /germicide / shampoos /(hair) conditioners /spermicidal jelly

		Allow cleaning	1
(b)	(i)	(Poly)ester	1
		Terylene <i>OR</i> PET Allow polyester	1
	(ii)	(Poly)amide	1
		Kevlar OR nylons Ignore numbers with nylons Allow polyamide(e)	1
	(iii)	(Independent marks) $CE = 0$ Hydrogen bonding in b(ii)	1

Imfs in (b)(ii) are stronger

OR

H bonding stronger than dipole–dipole/van der Waals/ dispersion/London forces in b(i)

1

[9]