M1. (a) 3-hydroxypropanoic acid
allow 3-hydroxypropionic acid must be correct spelling
(b) (i) must show trailing bonds

or can start at any point in the sequence, e.g.

not allow dimer
allow $-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-$
or $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{COO}-$
ignore () orn
$N B$ answer has a total of 6 carbons and 4 oxygens
(ii) condensation (polymerisation)

Allow close spelling
(c) (i) $\mathrm{C}=\mathrm{C}$ or carbon-carbon double bond
(ii)

must show ALL bonds including $\mathrm{O}-\mathrm{H}$
(iii) must show trailing bonds

allow polyalkene conseq on their c(ii) ignore n
(d)

allow $\mathrm{NH}_{3}{ }^{+}$-
allow COO^{-}
(e) (i)

In (e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly
NB two carboxylate groups
Allow COONa or $\mathrm{COO}^{-} \mathrm{Na}^{+}$but not covalent bond to Na allow $\mathrm{NH}_{2}-$
(ii)

OR

In (e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly
NB two ester groups
allow $\mathrm{NH}_{2}-$ or ${ }^{+} \mathrm{NH}_{3}-$
(iii)

In 4(e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly allow anhydride formation on either or both COOH groups (see below) with or without amide group formation

(f) M1 phase or eluent or solvent (or named solvent) is moving or mobile

M2 stationary phase or solid or alumina/silica/resin

M3 separation depends on balance between solubility or affinity (of compounds) in each phase
OR
different adsorption or retention

OR

(amino acids have) different R_{f} values
OR
(amino acids) travel at different speeds or take different times

M2 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

M3 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$ allow $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOC}_{2} \mathrm{H}_{5}$ penalise M3 for wrong products and unbalanced equation

M4 $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$ or HCl or $\mathrm{H}_{3} \mathrm{PO}_{4}$ conc or dil or neither not HNO_{3}
(b) M1 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
not $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OH}$
M2 $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$

M3 $\rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$
allow $\mathrm{CH}_{3} \mathrm{COOC}_{4} \mathrm{H}_{4}$ penalise M3 for wrong products and unbalanced equation
(c) (nucleophilic) addition-elimination

(d)

ignore errors in initial triester
First mark for $3 \mathrm{CH}_{3} \mathrm{OH}$
Third mark for all three esters
(e)

First mark for correct ester link second mark for the rest including trailing bonds
If ester link wrong, lose second mark also

Adv reduces landfill saves raw materials lower cost for recycling than making from scratch reduces CO_{2} emissions by not being incinerated not allow cost without qualification

Disad difficulty/cost of collecting/sorting/processing product not suitable for original purpose, easily contaminated not allow cost without qualification ignore energy uses

condensation
(b)

(c) ionic bonding in aminoethanoic acid
(can only score if includes that aminoethanoic is ionic)
stronger attractions than Hydrogen bonding in hydroxyethanoic acid
(e.g. stronger Hydrogen bonding in aminoethanoic acid scores 0)
(mention of electrostatic forces between molecules scores 0)

M4. (a) (i) W 3

X 4
(ii)

displayed formula shows ALL bonds
(b) (i) $\quad \mathrm{NO}_{2}{ }^{+}$
allow + anywhere can score in equation
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

OR

$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ or use two equations via $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}$
(ii) electrophilic substitution

Not Friedel Crafts
M1 M3

M2
Allow Kekule structures

+ must be on N of ${ }^{+} \mathrm{NO}_{2}$ (which must be correct)
both NO_{2} must be correctly positioned and bonded to gain M2
M1 arrow from circle or within it to N or to + on N horseshoe must not extend beyond C2 to C6 but can be
smaller
+ not too close to C1
M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure
ignore base removing H in M3
(c) (i) $\mathrm{H}_{2} / \mathrm{Ni}$ or $\mathrm{H}_{2} / \mathrm{Pt}$ or $\mathrm{Sn} / \mathrm{HCl}$ or $\mathrm{Fe} / \mathrm{HCl}$ (conc or dil or neither) allow dil $\mathrm{H}_{2} \mathrm{SO}_{4}$
ignore mention of NaOH
Not NaBH_{4}
Not LiAlH_{4}
Not $\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
not conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ or any HNO_{3}

$4 \mathrm{H}_{2} \mathrm{O}$
Or 6H2
allow $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}$ etc ,
allow $\mathrm{NO}_{2}-\mathrm{NH}_{2}-$
i.e. be lenient on structures, the mark is for balancing equ
(ii)

$1^{\text {st }}$ mark for correct peptide link
$2^{\text {nd }}$ mark for the rest correct including trailing bonds
(iii) M1 Kevlar is biodegradeable but polyalkenes not allow Kevlar is more biodegradeable

M2 Kevlar has polar bonds/is a (poly) amide/has peptide link comment on structure of Kevlar

M3 can be hydrolysed/attacked by nucleophiles/acids/ bases/enzymes

M4 polyalkenes non polar/has non-polar bonds comment on structure of polyalkenes but not just strong bonds

