(a) <u>Water</u> or <u>H₂O</u> or <u>molecules</u> (in ice) are held <u>further apart</u> (than in liquid water)/(more) <u>space/gaps/holes</u> in structure/<u>Water</u> or <u>H₂O</u> or <u>molecules</u> (in ice) are more spread out

Allow water (liquid) is more compact/less space/gaps/holes

CE if holes filled with air, O2 etc

CE if macromolecule

CE if <u>atoms</u> further apart (since ambiguous)

Ignore spaces filled with H₂O

Ignore reference to H bonds

Allow better tessellation in liquid water

(b) (i) Hydrogen bonding

Allow H bonds

Do not allow 'hydrogen' only but mark on

(ii) Van der Waals'/VdW

Allow London forces, dispersion forces, temporary induced dipole forces

1

1

1

(iii) Hydrogen bonding is stronger (than van der Waals forces)/IMF in ice stronger (than IMF in methane)/H bonds take more energy to break

Not H Bonds are strong (needs comparison)

If (b)(i) OR (ii) is incorrect, cannot award (b)(iii)

If (b)(i) and/or (ii) is blank, can score (b)(iii)

(c) (i) Structure showing 3 bonds to H and 1 lone pair

(trigonal) pyramid(al)/(distorted) tetrahedral
do not insist on the + sign
Allow triangular pyramid
Not square pyramid
Ignore bond angles in structure
M2 independent of M1

1

(ii) 107°

Allow range 106 – 108°

Ignore °(C)

1

(iii) NH₃/ammonia

Contradictions (eg NH₄ ammonia) CE = 0

1

1

(d) 3

Allow three/III/3 lone pairs/3lp/3 lone pairs of electrons

[9]

M2. (a) (i) shared pair of electrons

Can have one electron from each atom contributes to the bond

Not both electrons from one atom

1

(ii) $\frac{1}{2} \frac{1}{Cl_2} + \frac{3}{2} \frac{1}{F_2} \rightarrow ClF_3$

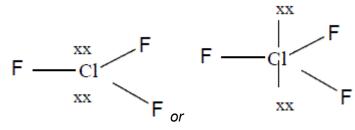
1

Only

Ignore state symbols even if wrong

(b)

1


Allow any structure with 4 bp

In CClF₂, watch for Cl in centre- it must be C

Ignore wrong bond angles

Representations of lone pairs allowed are the two examples shown with or without the electrons in the lobe.

Also they can show the lone pair for either structure by two crosses/dots or a line with two crosses/dots on it e.g.

Or a structure with 3 bp and 2 lp

1

(c) Dipole – dipole

Allow van der Waals/vdw/London/dispersion/temporary dipole – induced dipole Not dipole alone

1

(d) (i) Coordinate/dative (covalent)

If wrong CE = 0/3 but if 'covalent' or left top line blank, mark on.

1

(Lone) pair of electrons/both electrons (on F-)

				CE if lone pair is from B	1	
			Dona	ated from F-/fluoride or donated to the BF ₃ Must have the – sign on the F ie F- Ignore FI- M3 dependent on M2		
		(ii)	109°	' to 109.5°	1	
	(e)		3×100 438 4.3%	For 1 mark allow 238 as numerator and 438 as denominator or correct strings	1	
		- 54	1.370	2 marks if correct answer to 3 sig figs. 54% or greater than 3 sig figs = 1 mark	1	[11]
М3.		(a)	(i)	Covalent; If not covalent CE = 0. If blank, mark on.	1	
				red <u>pair of electrons</u> (one from each atom); Not shared electrons.	1	
		(ii)	Van	rogen bonds / H bonds; Not just hydrogen. der Waals/London/dispersion forces/temporary ced dipole;	1	

1

(b) Showing all the lone pairs on both molecules; Allow showing both lone pairs on the O involved in the H-bond. 1 Showing the partial charges on O and H on both molecules; Allow showing both partial charges on the O and H of the other molecule involved in the H bond. 1 Showing the Hydrogen bond from the lone pair on O of one molecule to the delta + on the H of the other molecule; 1 (c) $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O;$ (i) Accept multiples. Allow C₂H₆O. 1 (ii) CO is (produced which is) toxic/ poisonous/C (may be produced) which is toxic/ C is a respiratory irritant/ C (particles) exacerbate asthma/C causes global dimming/ smog; Must relate to C or CO. Any mention of $SO_2 NO_2$ or other pollutants CE = 0. 1 (iii) More fuel needed (which costs more)/Wastes fuel/ less fuel burnt (so need more to buy more)/engine gets sooty so need to pay for engine to be cleaned/Have to fit catalytic converter; Not just costs more. Not engine gets sooty unless qualified. 1 (d) (i) (React) with CaO/ calcium oxide/quicklime/lime; Accept CaCO₃/ calcium carbonate/limestone. Not chalk. 1 All the sulfur dioxide may not react with the CaO or CaCO₃ / may not have time to react/ incomplete reaction; Accept incomplete reaction. 1

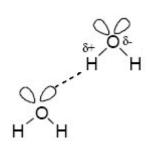
(ii) Occupies a (much) smaller volume; Not easier to store or transport.

[13]

M4. (a) Hydrogen/H bonds

Not just hydrogen

1


1

van der Waals/vdw/dipole-dipole/London/temporarily induced dipole/dispersion forces

Not just dipole

1

(b)

M1 for partial charges as indicated in diagram (correct minimum)

M2 for all four lone pairs

M3 for H bond from the lp to the H (δ +) on the other molecule

Lone pair on hydrogen CE = 0

OHO CE = 0

If only one molecule of water shown

CE = 0

3

(c) Hydrogen bonds/IMF (in water) stronger

OR

IMF/VDW/dipole-dipole forces (in H₂S) are weaker

OR

	Ignore energy references Comparison must be stated or implied	1	
(d)	Atoms/molecules get larger/more shells/more electrons/more surface area		
	Not heavier/greater Mr	1	
	therefore increased Van der Waals/IMF forces		
	Ignore references to dipole-dipole forces	1	
(e)	Dative (covalent)/coordinate If not dative/coordinate CE = 0/2 If covalent or blank read on (Lone) pair/both electrons/two electrons on O(H₂) donated (to H¹) OR pair/both electrons come from O(H₂) Explanation of a coordinate bond specific to oxygen or water required	1	
	Not just H+ attracted to lone pair since that is nearer to a H bond	1	
(f)	ionic if not ionic CE = 0	1	
	oppositely charged <u>ions</u> /+ and – <u>ions or particles</u> atoms or molecules loses M2 and M3	1	
	ions attract strongly OR strong/many (ionic) bonds must be broken S- loses M2 Reference to IMF loses M2 and M3	1	[13]