M1.		(a) Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself); Not withdraw an electron If ref to ionic, metallic, imf etc then CE = 0	1
		From a <u>covalent bond</u> or from a shared pair of electrons; Not distort Not remove electrons	1
	(b)	Van der Waals/ vdw/London/ temporary (induced) dipole/ dispersion forces;	1
		Hydrogen bonds/H bonds; Not just hydrogen	1
	(c)	(Large) electronegativity difference between N + H/ difference of 0.9/ N very electronegative; Insufficient to say N= 3.1 and H = 2.1	1
		Forms N δ– / H δ+ or dipole explained in words; Not N becomes (fully) negative or vice versa Lone pair on N attracts/forms weak bonds with H (δ+); QWC Can score M2 and 3 from a diagram	1
	(d)	Co-ordinate/dative; If not correct then CE = 0. If covalent/blank mark on.	1
		Both electrons/ lone pair (on P/PH₃) Not lone pair on hydrogen	1
		Shares/donated from P(H ₃)/ to H(δ +);	1

(e) 3 bonds and 1 lp attached to As;

Must label H and As atoms Accept distorted tetrahedral not bent tetrahedral

1

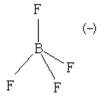
Pyramidal/tetrahedral/ trigonal pyramidal;
Not bipyramidal/triangular

1

(f) (Only) weak Van der Waals forces between molecules /AsH₃ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds;

Accept has no H bonds. Ignore dp-dp in AsH_3 provided ammonia has stronger IMF. If between atoms mentioned CE=0 Break bonds CE = 0

1


(g) 4AsCl₃ + 3NaBH₄ → 4AsH₃ + 3NaCl + 3BCl₃;
Accept multiples

[14]

M2. (i)

(1)

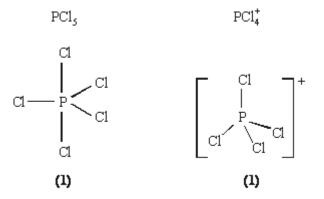
(1)

[Do not allow shapes which show a lone pair]

2

BF₃ Trigonal planar/planar triangular [Not plane triangle]

1


		BF 4	Tetrahedral		
			[Not distorted tetrahedral]	1	
		Equal repulsion between (4) bonding pairs/bonds/bonding electrons			
		109(½)°		1	
				1	
	(ii)	Lone pair	donated / both electrons supplied by <u>one atom</u>	1	
		from F ⁻ (to B) [ignore missing charge or fluorine or 'atom']			
		dative/dati	ve covalent/coordinate bonding	1	
140		() ()			
М3.		(a) (i)	Electronegativity (difference) or suitable description (1) Accept F and Cl are highly electronegative Not both atoms are highly electronegative		
			hydrogen bonding (1)(permanent) dipole-dipole bonding or even van de Waals' (1)		
		Hydrogen bonding stronger / is the strongest IMF (1) Accept a statement that HF must have the stronger IMF,			
			even if no IMFs identified		
			The explanation must be based on intermolecular forces/attractions		
			Note: if the explanation is <u>clearly</u> <u>intramolecular</u> = CE	4	
	(b) Electron <u>pair</u> or lone <u>pair</u> donated (1)				
	Do not accept 'donation of electrons'				
	From chloride ion to Al or AlCl ₃ (1) M1 can be earned by a general explanation of coordinate				
			bonding, even if the electron pair is said to come from Al.		

[9]

The second mark, M2, is for this specific bond Ignore missing charge

2

(c) 4

PCl₅ shown as trigonal bipyramid [Look for: ONE solid linear Cl-P-Cl bond]

Bond Angle(s) 90° and 120° (1)

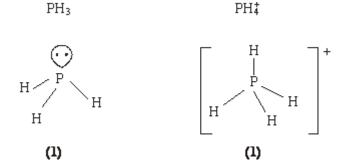
PCl₄ shown as tetrahedral NO solid linear Cl-P-Cl bonds]

Bond angle(s) 109 or 109.5° (1)

[10]

M4. (a) dative / coordinate (covalent) bond;

Lone/non-bonding pair / both electrons;


(donated) from P to H⁺;

1

1

1

(b)

pyramidal *OR* trigonal pyramid 109(^{1/2})°; (accept tetrahedral)

M5. (a) $4LiH + AICI_3 \rightarrow LiAIH_4 + 3LiCI$

(b) $H = 1s^2$ or $1s_2$

4

1

1

[7]

(c) Tetrahedral or diagram
(Not distorted tetrahedral)

(Equal) <u>repulsion</u>

between four bonding pairs / bonds

(Not repulsion between H atoms loses M2 and M3) (Not 'separate as far as possible') ('4' may be inferred from a correct diagram)

(d) Dative (covalent) or coordinate

Lone pair or non-bonding pair of electron or both e-

Page 6

1

1

QoL Donated from H⁻ to Al or shared between H and Al (tied to M2)
(Not 'from H atom') (Not 'to Al ion') (Not 'e-s transferred')

[8]