Q1. The table below shows the electronegativity values of some elements.

	Н	С	N	0
Electronegativity	2.1	2.5	3.0	3.5

(a)	State the meaning of the term <i>electronegativity</i> .	
		(2)
		()
/I- \		
(b)	State the strongest type of intermolecular force in the following compounds.	
	Methane (CH₄)	
	Ammonia (NH ₃)	(2)
(c)	Use the values in the table to explain how the strongest type of intermolecular force arises between two molecules of ammonia.	
		(2)
		(3)
(d)	Phosphorus is in the same group of the Periodic Table as nitrogen.	
	A molecule of PH ₃ reacts with an H ⁺ ion to form a PH ₄ ⁺ ion. Name the type of bond formed when PH ₃ reacts with H ⁺ and explain how this bond is formed.	
	Type of bond	
	Explanation	

		(3)
(e)	Arsenic is in the same group as nitrogen. It forms the compound AsH ₃ Draw the shape of an AsH ₃ molecule, including any lone pairs of electrons the shape made by its atoms. Shape	. Name
	Name of shape	(2)
(f)	The boiling point of AsH $_3$ is -62.5 °C and the boiling point of NH $_3$ is -33.0 Suggest why the boiling point of AsH $_3$ is lower than that of NH $_3$	°C.
		(1)
(g)	Balance the following equation which shows how AsH $_3$ can be made AsCl $_3$ + NaBH $_4$ \rightarrow AsH $_3$ + NaCl + BCl $_3$	(1) (Total 14 marks)

Q2. The equation below shows the reaction between boron trifluoride and a fluoride ion.

$$BF_3 + F^- \rightarrow BF^4$$

- (i) Draw diagrams to show the shape of the BF₃ molecule and the shape of the BF⁻¹ ion. In each case, name the shape. Account for the shape of the BF⁻¹ ion and state the bond angle present.
- (ii) In terms of the electrons involved, explain how the bond between the BF₃ molecule and the F⁻ ion is formed. Name the type of bond formed in this reaction.

(Total 9 marks)

(4)

Q3. (a) Both HF and HCl are molecules having a polar covalent bond. Their boiling points are 293 K and 188 K respectively.

(i)	State which p	roperty of the	atoms involved	causes a bond	l to be polar

(ii) Explain, in terms of the intermolecular forces present in each compound, why HF has a higher boiling point than HCl.

 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

.....

(b) When aluminium chloride reacts with chloride ions, as shown by the equation below, a co-ordinate bond is formed.

 $\mathsf{AICI_3} \ + \ \mathsf{CI^-} \ \to \ \mathsf{AICI_4^-}$ Explain how this co-ordinate bond is formed. (2) Draw the shape of the PCI₅ molecule and of the PCI₄ ion. State the value(s) of the (c) bond angles. PCI_4^+ PCI₅ Bond angle(s) Bond angle(s) (Total 10 marks)

- Q4. Phosphorus and nitrogen are in Group V of the Periodic Table and both elements form hydrides. Phosphine, PH_3 , reacts to form phosphonium ions, PH_4^+ , in a similar way to that by which ammonia, NH_3 , forms ammonium ions, NH_4^+
 - (a) Give the name of the type of bond formed when phosphine reacts with an H⁺ion. Explain how this bond is formed.

Type of bond
Explanation

 (b) Draw the shapes, including any lone pairs of electrons, of a phosphine molecand of a phosphonium ion. Give the name of the shape of the phosphine molecule and state the bond are found in the phosphonium ion. 				
		PH ₃	PH ₄	
		Shape of PH ₃	Bond angle in PH_4^+ (Total 7 marks	4
Q5.		- 1₄	and containing the hydride ion, H- loride, AlCl₃, produces the ionic compound presents the reaction between LiH and AlCl₃	1
	(b)	Give the electronic configuration of the	e hydride ion H-	

1	4	١
(ı	1

(c)	Predict the shape of the $^{\text{AlH}_{4}^{-}}$ ion. Explain why it has this shape.	
	Shape	
	Explanation	
		(3)
		(-,
(d)	A bond in $^{AlH_{4}^{-}}$ can be represented by H $ ightarrow$ Al	
	Name this type of bond and explain how it is formed.	
	Type of bond	
	Explanation	
		(3) (Total 8 marks)