Q1. The table below shows the electronegativity values of some elements. | | Н | С | N | 0 | |-------------------|-----|-----|-----|-----| | Electronegativity | 2.1 | 2.5 | 3.0 | 3.5 | | | | | | | | (a) | State the meaning of the term <i>electronegativity</i> . | | |-------|--|-----| | | | | | | | | | | | (2) | | | | () | | /I- \ | | | | (b) | State the strongest type of intermolecular force in the following compounds. | | | | Methane (CH₄) | | | | Ammonia (NH ₃) | (2) | | | | | | (c) | Use the values in the table to explain how the strongest type of intermolecular force arises between two molecules of ammonia. | (2) | | | | (3) | | (d) | Phosphorus is in the same group of the Periodic Table as nitrogen. | | | | A molecule of PH ₃ reacts with an H ⁺ ion to form a PH ₄ ⁺ ion.
Name the type of bond formed when PH ₃ reacts with H ⁺ and explain how this bond is formed. | | | | Type of bond | | | | Explanation | | | | | (3) | |-----|--|-------------------------| | (e) | Arsenic is in the same group as nitrogen. It forms the compound AsH ₃ Draw the shape of an AsH ₃ molecule, including any lone pairs of electrons the shape made by its atoms. Shape | . Name | | | Name of shape | (2) | | (f) | The boiling point of AsH $_3$ is -62.5 °C and the boiling point of NH $_3$ is -33.0 Suggest why the boiling point of AsH $_3$ is lower than that of NH $_3$ | °C. | | | | (1) | | (g) | Balance the following equation which shows how AsH $_3$ can be made AsCl $_3$ + NaBH $_4$ \rightarrow AsH $_3$ + NaCl + BCl $_3$ | (1)
(Total 14 marks) | **Q2.** The equation below shows the reaction between boron trifluoride and a fluoride ion. $$BF_3 + F^- \rightarrow BF^4$$ - (i) Draw diagrams to show the shape of the BF₃ molecule and the shape of the BF⁻¹ ion. In each case, name the shape. Account for the shape of the BF⁻¹ ion and state the bond angle present. - (ii) In terms of the electrons involved, explain how the bond between the BF₃ molecule and the F⁻ ion is formed. Name the type of bond formed in this reaction. (Total 9 marks) (4) **Q3.** (a) Both HF and HCl are molecules having a polar covalent bond. Their boiling points are 293 K and 188 K respectively. | (i) | State which p | roperty of the | atoms involved | causes a bond | l to be polar | |-----|---------------|----------------|----------------|---------------|---------------| | | | | | | | |
 |
 | | |------|------|--| (ii) Explain, in terms of the intermolecular forces present in each compound, why HF has a higher boiling point than HCl. |
 | • | • |
 | |------|---|---|------| | | | | | | | | | | |
 |
 | |------|------| | | | (b) When aluminium chloride reacts with chloride ions, as shown by the equation below, a co-ordinate bond is formed. $\mathsf{AICI_3} \ + \ \mathsf{CI^-} \ \to \ \mathsf{AICI_4^-}$ Explain how this co-ordinate bond is formed. (2) Draw the shape of the PCI₅ molecule and of the PCI₄ ion. State the value(s) of the (c) bond angles. PCI_4^+ PCI₅ Bond angle(s) Bond angle(s) (Total 10 marks) - Q4. Phosphorus and nitrogen are in Group V of the Periodic Table and both elements form hydrides. Phosphine, PH_3 , reacts to form phosphonium ions, PH_4^+ , in a similar way to that by which ammonia, NH_3 , forms ammonium ions, NH_4^+ - (a) Give the name of the type of bond formed when phosphine reacts with an H⁺ion. Explain how this bond is formed. | Type of bond | |--------------| | Explanation | | | | | | | | (b) Draw the shapes, including any lone pairs of electrons, of a phosphine molecand of a phosphonium ion. Give the name of the shape of the phosphine molecule and state the bond are found in the phosphonium ion. | | | | | |--|-----|--|---|----------| | | | PH ₃ | PH ₄ | | | | | Shape of PH ₃ | Bond angle in PH_4^+ (Total 7 marks | 4 | | Q5. | | - 1₄ | and containing the hydride ion, H-
loride, AlCl₃, produces the ionic compound
presents the reaction between LiH and AlCl₃ | 1 | | | (b) | Give the electronic configuration of the | e hydride ion H- | | | 1 | 4 | ١ | |---|---|---| | (| ı | 1 | | (c) | Predict the shape of the $^{\text{AlH}_{4}^{-}}$ ion. Explain why it has this shape. | | |-----|--|------------------------| | | Shape | | | | Explanation | | | | | | | | | (3) | | | | (-, | | | | | | (d) | A bond in $^{AlH_{4}^{-}}$ can be represented by H $ ightarrow$ Al | | | | Name this type of bond and explain how it is formed. | | | | Type of bond | | | | Explanation | | | | | | | | | (3)
(Total 8 marks) |