M1.(a) $\quad \log (1 /$ time $)$ on the y-axis $+\log$ (vol) on x-axis If axes unlabelled use data to decide that log (1/ time) is on the y-axis

Sensible scales
Lose this mark if the plotted points do not cover at least half of the paper
Lose this mark if the graph plot goes off the squared paper Lose this mark if plots a non-linear / broken scale
Lose this mark if uses an ascending y-axis of negative numbers

Plots points correctly \pm one square

Line through the points is smooth
Lose this mark if the candidate's line is doubled

Line through the points is best fit - ignores last point Must recognise that point at $25 \mathrm{~cm}^{3}$ is an anomaly If wrong graph, mark consequentially on anomaly if correctly plotted.
A kinked graph loses smooth and best fit marks
(b) Uses appropriate x and y readings

Allow taken from table or taken or drawn on graph
Must show triangle on graph or such as $\frac{1.65-1.2}{1.4-0.9}$

Answer given to 2 decimal places
(c) First order or order is 1

Allow consequential answer from candidate's results
(d) Thermostat the mixture / constant temperature / use a water bath or Colorimeter / uv-visible spectrometer / light sensor to monitor colour change

Reaction / rate affected by temperature change or Eliminates human error in timing / more accurate time of colour change

M2. (a) (i) Experiment 2: 0.4(0) $\times 10^{-3}(1)$
Experiment 3: 0.15 (1)
Experiment 4: 0.28 (1)
(ii) $\mathrm{k}=\frac{4.8 \times 10^{-3}}{(0.20)^{2} \times(0.30)}=0.4(0) \mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
(1)
(1)
(1)
(b) (change in) temperature (1)

M3. (a) (i) (Experiment $1 \rightarrow 2$) [A] doubled, ($[B]$ constant, $)$ rate doubled (1)
stated or shown numerically
(ii) 2 (1) or shown as ... [B] ${ }^{2}$
(b) (i) $\mathrm{k}=\frac{9.30 \times 10^{-5}}{(0.75)^{2} \times(1.50)}=1.1(0) \times 10^{-4}$
(1)
(1)
units of k : $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}(1)$
(ii) rate $=\left(1.10 \times 10^{-4}\right) \times(0.20)^{2} \times(0.10)$
$=4.4(1) \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
(1) for the answer

Ignore units
Conseq on (i)
Upside down expression for k scores zero in (i) for 9073 but rate $=9073 \times(0.2)^{2} \times(0.1)=36(.3)$ conseq scores (1) in (ii)

M4. (a) order with respect to \mathbf{P} is 2
order with respect to \mathbf{Q} is 1
(b) (i) rate $=k[\mathrm{R}][\mathrm{S}]^{2}$

$$
\text { rate }=\left(4.2 \times 10^{-4}\right) \times 0.16 \times 0.84^{2}
$$

ignore units even if wrong

$$
=4.7 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)
$$

$$
=1.1 \times 10^{-4}
$$

(iii) T_{1}
*If calculated value for $k>4.2 \times 10^{-4}$, then answer to (iii) is T_{2}

M5. (a) Power (or index or shown as x in [$]^{x}$) of concentration term (in rate equation) (1)
(b) $2(1)$
(c) (i) Order with respect to A: 2 (1)

Order with respect to B: 0 (1)
(ii) Rate equation: (rate $=$) $k[A]^{2}(1)$

Allow conseq on c(i)
Units for rate constant: $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}(\mathbf{1})$

Organic points

(1) Curly arrows: must show movement of a pair of electrons, i.e. from bond to atom or from Ip to atom / space e.g.

OR

(2) Structures
penalise sticks (i.e.

or $\quad-\mathrm{NH}_{2}$

Penalise once per paper

M6. (a) 2 or two or second
(b) $\mathrm{k}=\frac{1.24 \times 10^{-4}}{(4.40)(0.82)}$
mark is for insertion of numbers into a correctly rearranged rate equ, $k=$ etc if upside down, (or use of I_{2} data) score only units mark $=3.4 \underline{4} \times 10^{-5}(\mathrm{~min} 3 \mathrm{sfs})$
$\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
any order
(c) no change or no effect or stays the same or 1.24×10^{-4}
(d) 1 or 2 or 1 and 2
if wrong no further mark but mark on from no answer
rate equ doesn't involve I_{2} or only step which includes 2 species in rate equ
(e)

M7. (a) (i) 2
(ii) 0
(b) (i) rate/ $\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$

13
$\mathrm{mol} \mathrm{dm}^{-3}$
(ii) 1.9×10^{-3}
(iii) Step 2

