Question A Number	Acceptable Answers	Reject	Mark
k	(Different) boiling temperatures/ boiling points ALLOW Range of boiling temperatures		(1)

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	breaking of carbon chain (in a hydrocarbon/ alkane) to give shorter chain hydrocarbon(s)/ smaller molecules OR breaking a hydrocarbon/ alkane to give smaller molecules OR Breaking an alkane to give an alkene and (a smaller) alkane/ hydrogen (1) Reforming: converting straight chain to a (more) branched chain/ ring/ arene / aromatic compound ALLOW Specific examples (1) IGNORE Makes more useful compounds Converting low octane (fuels) into high octane (fuels)	Just "Breaking a hydrocarbon" Just "Breaking a molecule" Breaking a hydrocarbon to form branched chains or ring structures	(2)

Question Number	Acceptable Answers	Reject	Mark
1(a) (iii)	Look at final answer: +71 (kJ mol ⁻¹) scores 3 marks -71/ 71 (kJ mol ⁻¹) scores 2 marks -5825 (kJ mol ⁻¹) scores 1 mark Method: $C_4H_{10} \rightarrow C_3H_6 + CH_4$ $(+13/2 O_2)$ $(+13/2 O_2)$ -2877 $-2058-890$ /-2948		(3)
	4CO ₂ + 5H ₂ O		
	MP1 Labelled cycle OR use of $\Delta H = \sum \Delta H_{\text{combustion}} \text{ reactants } -\sum \Delta H_{\text{combustion}} \text{ products}$ (1)		
	MP2 $\Delta H = (-2877 - (-2058 + (-890))$ (1)		
	MP3 = $+71 \text{ (kJ mol}^{-1}\text{)}$ (1)	Incorrect units	

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	$C_4H_{10} \rightarrow C_2H_6 + C_2H_4$ OR	$C_4H_{10} \rightarrow C_3H_6 + CH_4$	(1)
	$C_4H_{10} \rightarrow C_4H_8 + H_2$ OR $C_4H_{10} \rightarrow 2C_2H_4 + H_2$	Charged products eg C ₂ H ₅ ⁺	
	ALLOW Breakdown of multiple butanes Ignore state symbols, even if incorrect	Free radicals eg C ₂ H ₅ •	

Question Number	Acceptable Answers	Reject	Mark
1b(i)	Look at final answer: -2050 (kJ mol ⁻¹) or anything correctly rounded from -2046.528 (-2047, -2046.5, -2046.53) scores 3 marks		(3)
	+2050/ 2050 (kJ mol ⁻¹) scores 2 marks		
	Incorrect rounding scores 2 marks		
	Correct value without sign scores 2 marks		
	Energy transferred = (200 x 4.18 x 34.0) = 28424 (J) IGNORE Sign if given (1)		
	Mol pentane = $(1.0/72) = 0.01389 / 0.0139$ (1)		
	$\Delta H = - (-28424 \div (1/72 \times 1000))$		
	$= -2046.528 \text{ (kJ mol}^{-1}\text{)}$		
	ALLOW TE from MP 1 and 2 provided moles of pentane is not taken as 1 (1)		
	NOTE Use of 0.0139 mol gives -2044.9 (kJ mol ⁻¹) giving 3 marks Use of 0.0138 mol gives -2059.7 (kJ mol ⁻¹) giving 2 marks Use of 0.014 mol gives -2030.29 (kJ mol ⁻¹) giving 2 marks		
	Ignore SF except one or two		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Incomplete combustion OR Loss of pentane by evaporation ALLOW Volume of water too large to heat evenly Water not stirred evenly Small change in mass inaccurate Heat capacity of /energy needed to heat calorimeter not included	Incomplete reaction Loss of water by evaporation Heat losses Conditions not standard Measuring errors	(1)
		Pentane impure	

Question Number	Acceptable Answers	Reject	Mark
1(b)(iii)	Pentane is very volatile/ has low boiling temperature so risk of explosion		(1)
	OR Has high flammability	Just "it is flammable"	
	IGNORE Reaction is very exothermic	Vapour is toxic Combustion products/ CO toxic	

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ Allow multiples Ignore state symbols even if incorrect		(1)

Question Number	Acceptable Answers		Reject	Mark
1(c)(ii)	Bonds broken are four C-C twelve C-H eight O=O Bonds made are ten C=O twelve O-H ALLOW TE from (c)(i) If all five bonds are named but formulae not given eg oxygenoxygen bonds, max 1 If all five bonds are correctly identified by formula but number are incorrect or missing, max 1	(1) (1)	O-O single bonds C-O sing bonds	(2)
	twelve O-H ALLOW TE from (c)(i) If all five bonds are named but formulae not given eg oxygenoxygen bonds, max 1 If all five bonds are correctly identified by formula but number		_	

Question Number	Acceptable Answers	Reject	Mark
1(c) (iii)	The (total) bond energy of the bonds formed is greater than the bond energy of the bonds broken OR Energy released forming new bonds > energy needed to break old bonds OR The sum of the bond energies of the products is greater than the sum of the bond energies of the reactants.	Just"more bonds are made than broken" Answers referring to energy needed to make bonds Energy contained by bonds in reactants > energy contained by bonds in products	(1)

(Total for question = 16 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	Species/ atom/ molecule/ particle with an unpaired electron	Just "with a single electron"	(1)
	ALLOW An element with an unpaired electron	A lone electron	
	IGNORE Reference to neutral species /lack of charge	Charged particle with an unpaired electron	

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	Half arrows going from bond to CI or just beyond and product 2CI• / CI• + CI•	CI without •	(1)

Question Number	Acceptable Answers		Reject	Mark
2(iii)	$C_2H_6 + CI \cdot \rightarrow C_2H_5 \cdot + HCI$ ALLOW Structural formulae e.g. CH_3CH_3 OR displayed IGNORE Production of C_2H_5CI from $C_2H_5 \cdot$ first step is correct Propagation The second mark is independent the first	(1)(1)	C ₂ H ₅ ⁺	(2)

Question Number	Acceptable Answers	Reject	Mark
2(iv)	$C_2H_5 \bullet + C_2H_5 \bullet \rightarrow C_4H_{10}$ ALLOW Structural formulae e.g. $CH_3CH_2 \bullet$ /• CH_3CH_2 OR displayed IGNORE $CI \bullet + CI \bullet \rightarrow CI_2$	Methyl or propyl radicals	(1)

Question Number	Acceptable Answers	Reject	Mark
2b(i)	σ bond between C atoms shown as 2 overlapping orbitals/ one electron cloud/ single bond (1) π bond above and below σ bond shown as two electron clouds/ overlapping p orbitals/ p orbitals linked by a line / a curved line above and below single bond (1) Both bonds must be labelled for 2 marks.		(2)

Question Number	Acceptable Answers	Reject	Mark
*2b (ii)	σ bond remains ALLOW The product contains σ bonds only (1) MP2 π bonds break because they are weaker (than σ bonds) ALLOW π bonds break because σ bonds are stronger (1) MP3 Breaking the π bond results in carbocation intermediate / positively charged carbon forming OR π orbital overlap is lateral/ sideways /between parallel orbitals (making π bonds break/ weak) OR The σ bonds are much stronger (than the π bond) because of more effective (orbital) overlap		(3)

Question Number	Acceptable Answers		Reject	Mark
2 (b)(iii)	From: Purple/ pink (solution) To: colourless	(1)	To brown	(2)
	H H H H H H H H H H H H H H H H H H H	(1)	Molecular/ structural/ skeletal formulae	
	Any orientation Don't penalise undisplayed OH Don't penalise bonds going to middle of undisplayed OH		C bonded to H of OH	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iv)	Second mark depends on use of bromine/ solution of bromine for test.		(2)
	EITHER Test: add bromine water / Br ₂ (aq) ALLOW Add bromine in organic solvent/ bromine dissolved in hexane/ bromine in 1,1,1-trichloroethane (1)		
	From: brown/ red-brown/orange/ yellow To: colourless (1) OR Add bromine / Br ₂ (1)		
	From: brown/ red-brown To: colourless (1)		

Question Number	Acceptable Answers	Reject	Mark
2(b) (v)	Dipole on HBr Curly arrow from C=C double bond to H ⁵⁺ of HBr and curly arrow from H-Br bond to Br (1) Curly arrow from Br ⁻ to C ⁺ and formula of product ALLOW	Half	(4)
	Curly arrow from anywhere on Br, including the – sign or lone pair (which is optional) (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)	$/\!\!\!/ + H_2 \rightarrow /\!\!\!\!/$	Use of H, H ⁺	(2)
	(1)		
	Suitable catalyst nickel/ platinum/ palladium (1)	Zeolite catalyst	
	Ignore references to temperature, pressure, uv light		

Question	Acceptable Answers	Reject	Mark
Number			
3 (a)(i)	(Compound of) carbon and hydrogen	"Mixture of carbon and	1
	ONLY/ENTIRELY/PURELY	hydrogen only"	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	(Contains) only (C—C) single bonds/only σ bond(s) OR (Contains) no (C=C) double bond(s)/no triple bond(s) OR Cannot undergo addition (reactions) ALLOW Has maximum number of hydrogen atoms / has maximum amount of hydrogen /can form no more bonds IGNORE references to alkanes		1

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	Boiling point(s) / boiling temperatures / boiling ranges	Just 'different temperatures'	1
	ALLOW Different sizes of molecules / different chain lengths / different numbers of carbon atoms	Breaking of hydrocarbon chains	
	IGNORE References to melting points / melting temperatures / condensing		

Question Number	Acceptable Answers	Reject	Mark
3 (b)(ii)	Save fossil fuels / saves finite resources / saves petrol / saves diesel OR More sustainable OR Uses renewable resources / biodiesel made from 'natural resources' OR Biodiesel is a renewable fuel OR Plants (more) carbon neutral / use of plants improves carbon footprint (of fuel) OR Biodiesel has smaller carbon footprint / zero carbon footprint OR Biodiesel (more) carbon neutral		1
	ALLOW Reverse argument for petrol / 'normal' diesel (eg crude oil is non-renewable) IGNORE Less impact on the environment / references to 'environmentally friendly' / less polluting / acid rain IGNORE References to 'global warming' or 'Greenhouse Effect' or 'climate change'.		

Question	Acceptable Answers	Reject	Mark
Number			
3 (c)(i)	C ₉ H ₂₀		1
	IGNORE		
	Any structures drawn out		

Question	Acceptable Answers	Reject	Mark
Number 3 (c) (ii)	First mark: Any ONE of: - (Greater) demand for smaller molecules / (Greater) demand for smaller alkanes / (Greater) demand for alkenes / To make more useful products / To make more reactive product / To make smaller molecules / To make shorter molecules / To make alkenes / To make shorter chains NOTE: ALLOW 'To produce fuel(s)' Second mark: (High temperatures needed to)	No 2nd mark if any of the	2
	break (the C-C and / or C-H) bonds OR	following are mentioned:	
	To break (down) the (hydrocarbon) chain(s) / To break (down) the	Separation of molecules	
	molecule(s) / To split the molecule(s) / To break the hydrocarbon OR	Breaking intermolecular forces	
	(Reaction is) endothermic ALLOW To everyome the (high) estivation	References to (high) boiling temperatures / (high) boiling points	
	To overcome the (high) activation energy / the reaction has a high activation energy / provide activation energy	References to (high) melting temperatures / (high) melting points	
	IGNORE C-C bond is stable References to increasing rate (of reaction) References to yield / equilibrium References to efficiency / producing less CO		
	(1) Marks are stand-alone		

Question Number	Acceptable Answers	Reject	Mark
3 (d)(i)	(Substance that) produces energy or produces heat IGNORE:- References to 'power' References to just 'exothermic' References to burning or combustion or heating the fuel or reference to oxygen		1

Question Number	Acceptable Answers	Reject	Mark
3 (d)(ii)	$C_4H_{10}(g) + 61/2O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$ OR	H ₂ O(g) C ₄ H ₁₀ (I)	2
	$C_4H_{10}(g) + 6.5O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$ OR		
	$C_4H_{10}(g) + \frac{13}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$ OR		
	$2C_4H_{10}(g) + 13 \ O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$ OR Any other correct multiples		
	Correct species (1		
	Balancing and state symbols correct (1) 2 nd mark is dependent on the 1 st mark		

Question Number	Acceptable Answers	Reject	Mark
3 (d)(iii)	$C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$		1
	OR		
	$C_4H_{10} + 4.5 O_2 \rightarrow 4CO + 5H_2O$		
	OR		
	$C_4H_{10} + \frac{9}{2}O_2 \rightarrow 4CO + 5H_2O$		
	OR		
	$2C_4H_{10} + 9 O_2 \rightarrow 8CO + 10H_2O$		
	OR Any other correct multiples		
	IGNORE State symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
3(d)(iv)	Limited (supply of) air / oxygen OR insufficient (supply of) air / oxygen OR Oxygen / air not in excess OR Not enough air / not enough oxygen ALLOW	' no air' / ' no oxygen'	1
	'Lack of oxygen' / lack of ventilation IGNORE "It is not completely oxidized"		

Question Number	Acceptable Answers	Reject	Mark
3 (d)(iii)	$C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$		1
	OR		
	$C_4H_{10} + 4.5 O_2 \rightarrow 4CO + 5H_2O$		
	OR		
	$C_4H_{10} + \frac{9}{2}O_2 \rightarrow 4CO + 5H_2O$		
	OR		
	$2C_4H_{10} + 9 O_2 \rightarrow 8CO + 10H_2O$		
	OR Any other correct multiples		
	IGNORE State symbols even if incorrect		

Question	Acceptable Answers	Reject	Mark
Number			
3(d)(iv)	Limited (supply of) air / oxygen OR insufficient (supply of) air / oxygen OR Oxygen / air not in excess OR Not enough air / not enough oxygen ALLOW 'Lack of oxygen' / lack of ventilation IGNORE "It is not completely oxidized"	' no air' / ' no oxygen'	1

Question Number	Acceptable Answers		Reject	Mark
*3(e)(ii)	First mark: Initiation (step)	(1)		7
	Second mark: $Br-Br \rightarrow Br \bullet + Br \bullet /$ $Br_2 \rightarrow 2Br \bullet$	(1)		
	Third mark: Propagation (steps)	(1)		
	Fourth and fifth marks:			
		(1)	H● (the fourth and fifth	
	$Br_2 + C_4H_9 \bullet \rightarrow C_4H_9Br + Br \bullet$	(1)	marks cannot be awarded if H• appears in either propagation step)	
	Allow in either order			
	Sixth mark:			
		(1)		
	Seventh mark:			
	Any one of			
	$Br \bullet + Br \bullet \to Br_2$ OR			
	$C_4H_9\bullet + Br\bullet \rightarrow C_4H_9Br$ OR			
	$C_4H_9 \bullet + C_4H_9 \bullet \rightarrow C_8H_{18}$	(1)		

(Total for Question = 21 marks)