Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	(Different) boiling temperatures/ boiling points		(1)
	ALLOW Range of boiling temperatures		

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	breaking of carbon chain (in a hydrocarbon/ alkane) to give shorter chain hydrocarbon(s)/ smaller molecules OR breaking a hydrocarbon/ alkane to give smaller molecules OR Breaking an alkane to give an alkene and (a smaller) alkane/ hydrogen Reforming: converting straight chain to a (more) branched chain/ ring/ arene / aromatic compound ALLOW Specific examples IGNORE Makes more useful compounds Converting low octane (fuels) into high octane (fuels)	Just "Breaking a hydrocarbon" Just "Breaking a molecule" Breaking a hydrocarbon to form branched chains or ring structures	(2)

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	Look at final answer: +71 ($\mathrm{kJ} \mathrm{mol}^{-1}$) scores $\mathbf{3}$ marks -71/ 71 ($\mathrm{kJ} \mathrm{mol}^{-1}$) scores 2 marks -5825 (kJ mol${ }^{-1}$) scores 1 mark Method: $\left.\begin{array}{r} \mathrm{C}_{4} \mathrm{H}_{10} \\ \left(+13 / 2 \mathrm{O}_{2}\right) \\ -2877 \end{array}\right) \mathrm{C}_{3} \mathrm{C}_{6}+\mathrm{CH}_{4}\left(\begin{array}{c} \left(+13 / 2 \mathrm{O}_{2}\right) \\ 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} \end{array}\right.$ MP1 Labelled cycle OR use of $\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\text {combustion }}$ reactants - $\begin{equation*} \Sigma \Delta \mathrm{H} \text { combustion products } \tag{1} \end{equation*}$ MP2 $\begin{equation*} \Delta H=(-2877-(-2058+(-890)) \tag{1} \end{equation*}$ MP3 $\begin{equation*} =+71\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$	Incorrect units	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i v)}$	$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+$	(1)
	OR	CH_{4}	
	$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}$	Charged products eg $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$	
	$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$	Free radicals eg $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\circ}$	
	ALLOW Breakdown of multiple butanes Ignore state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
1b(i)	Look at final answer: -2050 ($\mathrm{kJ} \mathrm{mol}^{-1}$) or anything correctly rounded from -2046.528 (-2047, -2046.5, -2046.53) scores 3 marks +2050/ $2050\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 2 marks Incorrect rounding scores 2 marks Correct value without sign scores 2 marks Energy transferred $=(200 \times 4.18 \times$ 34.0) $\begin{equation*} =28424(\mathrm{~J}) \tag{1} \end{equation*}$ IGNORE Sign if given Mol pentane $=(1.0 / 72)=0.01389 /$ 0.0139 $\begin{equation*} \Delta H=-(-28424 \div(1 / 72 \times 1000)) \tag{1} \end{equation*}$ $=-2046.528\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ ALLOW TE from MP 1 and 2 provided moles of pentane is not taken as 1 NOTE Use of 0.0139 mol gives -2044.9 ($\mathrm{kJ} \mathrm{mol}^{-1}$) giving 3 marks Use of 0.0138 mol gives -2059.7 ($\mathrm{kJ} \mathrm{mol}^{-1}$) giving 2 marks Use of 0.014 mol gives -2030.29 (kJ mol${ }^{-1}$) giving 2 marks Ignore SF except one or two		(3)

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 (b) (i i)}$	Incomplete combustion OR Loss of pentane by evaporation ALLOW Volume of water too large to heat evenly Water not stirred evenly Small change in mass inaccurate Heat capacity of /energy needed to heat calorimeter not included	Incomplete reaction Loss of water by evaporation	(1)		
Heat losses					
Conditions not					
Measuring errors				\quad	Pentane impure
:---	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (\text { iii) }}$	Pentane is very volatile/ has low boiling temperature so risk of explosion OR Has high flammability	(1)	
	IGNORE Reaction is very exothermic	Just "it is flammable" Vapour is toxic Combustion products/ CO toxic	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i)}$	$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ Allow multiples Ignore state symbols even if incorrect	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i)}$	Bonds broken are four C-C twelve C-H eight O=O Bonds made are ten C=O twelve O-H ALLOW TE from (c)(i)	O-O single bonds	(2)
	If all five bonds are named but formulae not given eg oxygen- oxygen bonds, max 1 If all five bonds are correctly identified by formula but numbers are incorrect or missing, max 1	C-O sing bonds	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i i)}$	The (total) bond energy of the bonds formed is greater than the bond energy of the bonds broken OR Energy released forming new bonds > energy needed to break old bonds	Just"more bonds are made than broken"	(1)
Answers referring to energy needed to make bonds	OR The sum of the bond energies of the products is greater than the sum of the bond energies of the reactants.	Energy contained by bonds in reactants> energy contained by bonds in products	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i)}$	Species/ atom/ molecule/ particle with an unpaired electron	Just "with a single electron"	(1)
	ALLOW An element with an unpaired electron	A lone electron	
IGNORE Reference to neutral species /lack of charge	Charged particle with an unpaired electron		

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 (a) (i i)}$		Cl without •	(1)		Half arrows going from bond to Cl or just
:---					
beyond					
and					
product $2 \mathrm{Cl} \cdot / \mathrm{Cl} \bullet+\mathrm{Cl} \bullet$					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (i i i)}$	$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl} \bullet \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \bullet+\mathrm{HCl}$ ALLOW Structural formulae e.g. $\mathrm{CH}_{3} \mathrm{CH}_{3}$ OR displayed IGNORE Production of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ from $\mathrm{C}_{2} \mathrm{H}_{5} \bullet$ if first step is correct Propagation The second mark is independent of the first	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$	
(2)			

Question Number	Acceptable Answers	Reject	Mark
2(iv)	$\mathrm{C}_{2} \mathrm{H}_{5} \bullet+\mathrm{C}_{2} \mathrm{H}_{5} \bullet \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}$	Methyl or propyl radicals	(1)
	ALLOW Structural formulae e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \bullet$ $/ \bullet \mathrm{CH}_{3} \mathrm{CH}_{2}$ OR displayed IGNORE $\mathrm{Cl} \bullet+\mathrm{Cl} \bullet \rightarrow \mathrm{Cl}_{2}$		

Question Number	Acceptable Answers	Reject	Mark
2b(i)	σ bond between C atoms shown as 2 overlapping orbitals/ one electron cloud/ single bond π bond above and below σ bond shown as two electron clouds/ overlapping p orbitals/ p orbitals linked by a line / a curved line above and below single bond Both bonds must be labelled for 2 marks.		(2)

Question Number	Acceptable Answers	Reject	Mark
*2b (ii)	σ bond remains ALLOW The product contains σ bonds only (1)		(3)
	MP2 π bonds break because they are weaker (than σ bonds) ALLOW π bonds break because σ bonds are stronger MP3 Breaking the π bond results in carbocation intermediate / positively charged carbon forming OR (1) π orbital overlap is lateral/ sideways $/$ between parallel orbitals (making π bonds break/ weak) OR The σ bonds are much stronger (than the π bond) because of more effective (orbital) overlap		

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	From: Purple/ pink (solution) To: colourless Any orientation Don't penalise undisplayed OH Don't penalise bonds going to middle of undisplayed OH	To brown Molecular/ structural/ skeletal formulae C bonded to H of OH	(2)

Question Number	Acceptable Answers	Reject	Mark
2(b)(iv)	Second mark depends on use of bromine/ solution of bromine for test. ElTHER Test: add bromine water / Br2(aq) ALLOW Add bromine in organic solvent/ bromine dissolved in hexane/ bromine in 1,1,1-trichloroethane (1)	(2) From: brown/ red-brown/orange/ yellow To: colourless OR Add bromine / Br2 (1)	From: brown/ red-brown To: colourless

Question Number	Acceptable Answers	Reject	Mark
2(b)(v)			(4)
	Dipole on HBr Curly arrow from $\mathrm{C}=\mathrm{C}$ double bond to $\mathrm{H}^{\delta+}$ of HBr and curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br Correct intermediate with + charge Curly arrow from Br^{-}to C^{+}and formula of product ALLOW Curly arrow from anywhere on Br , including the - sign or lone pair (which is optional)	Half arrows	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c)}$	$/ \sim+\mathrm{H}_{2} \rightarrow$	Use of $\mathrm{H}, \mathrm{H}^{+}$	(2)
	Suitable catalyst nickel/ platinum/ palladium Ignore references to temperature, pressure, uv light	Zeolite catalyst	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i)}$	(Compound of) carbon and hydrogen ONLY/ ENTI RELY/ PURELY	"Mixture of carbon and hydrogen only"	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	(Contains) only (C-C) single bonds/ only σ bond(s) OR (Contains) no (C=C) double bond(s)/no triple bond(s) OR Cannot undergo addition (reactions)		1
ALLOW Has maximum number of hydrogen atoms / has maximum amount of hydrogen /can form no more bonds IGNORE references to alkanes			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i) ~}$	Boiling point(s) / boiling temperatures / boiling ranges	Just 'different temperatures' Breaking of hydrocarbon chains	$\mathbf{1}$
	ALLOW Different sizes of molecules / different chain lengths / different numbers of carbon atoms	IGNORE References to melting points / melting temperatures / condensing	

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l} \hline 3 \\ \text { (b) (ii) } \end{array}$	Save fossil fuels / saves finite resources / saves petrol / saves diesel OR More sustainable OR Uses renewable resources / biodiesel made from 'natural resources' OR Biodiesel is a renewable fuel OR Plants (more) carbon neutral / use of plants improves carbon footprint (of fuel) OR Biodiesel has smaller carbon footprint / zero carbon footprint OR Biodiesel (more) carbon neutral ALLOW Reverse argument for petrol / 'normal' diesel (eg crude oil is non-renewable) IGNORE Less impact on the environment / references to 'environmentally friendly' / less polluting / acid rain IGNORE References to 'global warming' or 'Greenhouse Effect' or 'climate change'.		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i)}$	$\mathbf{C}_{\mathbf{9}} \mathbf{H}_{\mathbf{2 0}}$ IGNORE Any structures drawn out		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	First mark: Any ONE of:- (Greater) demand for smaller molecules / (Greater) demand for smaller alkanes / (Greater) demand for alkenes / To make more useful products / To make more reactive product / To make smaller molecules / To make shorter molecules / To make alkenes / To make shorter chains NOTE: ALLOW 'To produce fuel(s)' Second mark: (High temperatures needed to) break (the $\mathrm{C}-\mathrm{C}$ and / or $\mathrm{C}-\mathrm{H}$) bonds OR To break (down) the (hydrocarbon) chain(s) / To break (down) the molecule(s) / To split the molecule(s) / To break the hydrocarbon OR (Reaction is) endothermic ALLOW To overcome the (high) activation energy / the reaction has a high activation energy / provide activation energy IGNORE $\mathrm{C}-\mathrm{C}$ bond is stable References to increasing rate (of reaction) References to yield / equilibrium References to efficiency / producing less CO Marks are stand-alone	No 2nd mark if any of the following are mentioned: Separation of molecules Breaking intermolecular forces References to (high) boiling temperatures / (high) boiling points References to (high) melting temperatures / (high) melting points	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (d) (i)}$	(Substance that) produces energy or produces heat IGNORE:- References to 'power' References to just 'exothermic' References to burning or combustion or heating the fuel or reference to oxygen	1	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 3 \\ & (\mathrm{~d})(\mathrm{ii}) \end{aligned}$	$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+61 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ OR $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+6.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ OR $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ OR $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ OR Any other correct multiples Correct species Balancing and state symbols correct (1) $2^{\text {nd }}$ mark is dependent on the $1^{\text {st }}$ mark	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(\mathbf{g}) \\ & \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{I}) \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (d) (\text { iii) }}$	$\mathrm{C}_{4} \mathrm{H}_{10}+41 / 2 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{C}_{4} \mathrm{H}_{10}+4.5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{C}_{4} \mathrm{H}_{10}+\frac{9}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$ OR $2 \mathrm{C}_{4} \mathrm{H}_{10}+9 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+10 \mathrm{H}_{2} \mathrm{O}$ OR Any other correct multiples IGNORE State symbols even if incorrect	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
3(d)(iv)	Limited (supply of) air / oxygen OR insufficient (supply of) air / oxygen OR Oxygen / air not in excess OR Not enough air / not enough oxygen ALLOW 'Lack of oxygen' / lack of ventilation IGNORE "It is not completely oxidized"	'no air' / 'no oxygen'	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (d) (\text { iii) }}$	$\mathrm{C}_{4} \mathrm{H}_{10}+41 / 2 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{C}_{4} \mathrm{H}_{10}+4.5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{C}_{4} \mathrm{H}_{10}+\frac{9}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$ OR $2 \mathrm{C}_{4} \mathrm{H}_{10}+9 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+10 \mathrm{H}_{2} \mathrm{O}$ OR Any other correct multiples IGNORE State symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (d) (i v)}$	Limited (supply of) air / oxygen OR insufficient (supply of) air / oxygen OR Oxygen / air not in excess OR Not enough air / not enough oxygen	'no air' / 'no oxygen'	1
	ALLOW 'Lack of oxygen' / lack of ventilation IGNORE "It is not completely oxidized"		

(Total for Question = 21 marks)

