Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$		$\mathbf{1}$
	IGNORE 'where $\mathrm{n}=1,2,3$ etc' or 'where n is greater than 1'		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	$\mathrm{C}_{10} \mathrm{H}_{22}+10^{1} / 2 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}+11 \mathrm{H}_{2} \mathrm{O}$ ALLOW $21 / 2 \mathrm{O}_{2}$ ALLOW any correct multiples IGNORE state symbols, even if incorrect	$\mathbf{2 1 [\mathrm { O }]}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	Any statement that makes it clear there is not enough air or oxygen e. Limited supply of air / limited supply of oxygen / not enough air / not enough oxygen / lack of oxygen / little amount of oxygen/ small amount of oxygen IGNORE "it is not completely oxidized"	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject		Mark
1(d) (i)		 benzene ring		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d) (i i)}$	$\mathrm{C}_{7} \mathrm{H}_{16} \rightarrow \mathrm{C}_{7} \mathrm{H}_{14}+\mathrm{H}_{2}$	Formulae other than molecular formulae	$\mathbf{1}$
	ALLOW $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{3}$ IGNORE state symbols, even if incorrect	Any other structural or displayed formulae	

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline \text { 1(d) } \\ \text { (iii) } \end{array}$	Any ONE of: (a cyclic alkane) has more efficient combustion allows smoother burning increases octane number reduces knocking / less likely to produce pre-ignition is a more efficient fuel burns better / easier to burn /combusts more easily / improves combustion IGNORE (a cyclic alkane): increases the volatility of a fuel "ignites more easily" "is a better fuel" "burns more cleanly" IGNORE (a cyclic alkane) has a lower boiling point mentions of viscosity safer fuel	Less pollution / reduce waste High atom economy Produces useful products / hydrogen Used to make polymers Produces substances in higher demand / more valuable	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (e) (i)}$	2,2-dimethylpentane IGNORE missing hyphen/missing comma	2-dimethylpentane	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (e) (i i)}$			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (f) (i)}$	U.V. / U.V.light / light / sunlight		$\mathbf{1}$
	ALLOW high temperature	heat alone	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (f) (i i)}$	$\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{\cdot}+\mathrm{Cl}^{\cdot} /$ $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{\cdot}$ IGNORE any curly arrows, even if incorrect IGNORE $\mathrm{C}_{4} \mathrm{H}_{10}$ given on both sides		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (f) (i i i)}$	Homolytic (fission) IGNORE any formulae and arrows	Photolysis (fission) / free radical (fission)	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
1(f)(iv	propagation step) $\begin{equation*} \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl}^{\cdot} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9}{ }^{\cdot}+\mathrm{HCl} \tag{1} \end{equation*}$ (Second propagation step) $\begin{equation*} \mathrm{C}_{4} \mathrm{H}_{9}{ }^{\cdot}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl}^{-} \tag{1} \end{equation*}$ Formulae can be displayed 'dots' can be anywhere on free radical but no dots at all scores zero ALLOW in either order Incorrect alkane / halogenoalkane but two correct propagation steps scores 1 out of 2	Any reactions involving Hydrogen radicals scores zero Reverse of first reaction	2

Question Number	Acceptable Answers	Reject	Mark
1(f)(v)	Any ONE of: $\mathrm{C}_{4} \mathrm{H}_{9}{ }^{-}+\mathrm{Cl}^{\cdot} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ OR $\mathrm{Cl}^{\cdot}+\mathrm{Cl}^{\cdot} \rightarrow \mathrm{Cl}_{2}$ OR $\mathrm{C}_{4} \mathrm{H}_{9}{ }^{\cdot}+\mathrm{C}_{4} \mathrm{H}_{9}{ }^{\cdot} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}$		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (a) (i) ~}$	Easier to transport / easier to store / less space / less volume needed for storage / easier to handle / easier to transfer IGNORE references to "safety" Accept Denser/ cheaper to transport OWTTE	Just "cost"	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
2 (a)(ii)	skeletal formula (1)		
	Name: butane (1) Stand alone skeletal formula (1)		
	(1)		
	Name: methylpropane OR 2-methylpropane (1) IGNORE incorrect punctuation [e.g. extra/ missing hyphens, etc.] Stand alone IGNORE displayed formulae if also given with skeletal formulae if 2 correct displayed formulae are given max 1 out of 2 for the structures		

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (a) (i i i) ~}$	(Structural) isomers		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (b) (i)}$	$\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{\prime}+\mathrm{Cl} \cdot /$ $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{\prime} \quad$ (1) (U.V.) light / sunlight (1) Must show the dots . IGNORE any subsequent propagation steps in (b)(i)	heat alone	

Question Number	Correct Answer	Reject	Mark
2 (b)(ii)	$\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{Cl}^{\cdot} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}{ }^{\prime}+\mathrm{HCl}$ (1)		$\mathbf{2}$
	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{\prime}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}+\mathrm{Cl}^{\prime}$ (1)		
	Must show the dots ${ }^{\circ}$		

Question Number	Correct Answer	Reject	Mark
2 (b)(iii)	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{\prime}+\mathrm{Cl}^{\cdot} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$		$\mathbf{1}$
	$\mathbf{O R}$		
	$\mathrm{Cl}^{\cdot}+\mathrm{Cl}^{\cdot} \rightarrow \mathrm{Cl}_{2}$		
$\mathbf{O R}$			
$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{\prime}+\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}$			
Must show dots in termination step			

Question Number	Correct Answer	Reject	Mark
2 (c)(i)	Alkene / triene Accept Diene Carbon-carbon double bond		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark		
2 (c)(ii)	From: Red / brown / orange / yellow or combinations of these colours	"clear" instead of colourless	$\mathbf{1}$		To: colourless
:---					
both colours needed	\quad	(
:---					

Question Number	Correct Answer	Reject	Mark
2 (c)(iii)	Electrophilic (1) addition (1)		$\mathbf{2}$

Question Number	Correct Answer	Reject	Mark
2 (c)(iv)	Calculation:		2
	0.01 mol myrcene reacts with 0.03 mol H		
	OR		
	1 mol myrcene reacts with $3 \mathrm{~mol} \mathrm{H}_{2}$		
	Structural formula:		
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$		
	OR		
	Accept Fully displayed formula/ skeletal formula		
	Mark calculation and structural formula independently.		

Question Number	Correct Answer	Reject	Mark
2 (d)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a)}$	$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+31 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$		$\mathbf{2}$
	Formulae and states	(1)	
Balancing of correct entities	(1)		
		Multiples	

Question Number	Acceptable Answers	Reject	Mark
3(b)	Notice the first mark is for the equation and there are 3 separate additional marks for the calculation Check all bonds displayed especially $\mathrm{Cl}-\mathrm{Cl}$ and H- Calculation marks: $\left.\begin{array}{l} +413+243(\mathbf{1}) \\ \text { OR } 656(-)(346+432) \\ =-122(\mathrm{~kJ} \mathrm{~mol} \end{array}{ }^{-1}\right)(\mathbf{1})$ Fully correct answer to calculation with no working Extra 5×413 and 347 may be included on both sides, giving 3068 and (-)3190 Allow other same values(s) missing from both sides Bonds breaking Bonds making [Bonds breaking - bonds making] to give correct answer with sign	Incorrect / no sign and / or incorrect units Incorrect units loses this mark	4

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | ---: | :--- | :--- |
| $\mathbf{3}$
 $\mathbf{(c) (i)}$ | Initiation
 Allow homolysis / atomization / homolytic
 (fission)
 Ignore any reference to free radical
 substitution
 UV / (sun)light
 Ignore reference to high temperature | Free radical
 substitution
 alone | 2 |

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{3}$	$\mathrm{Cl} \cdot+\mathrm{Cl} \bullet \rightarrow \mathrm{Cl}_{2}$	(1)		2
$\mathbf{(c) (i i i) ~}$	$\bullet \mathrm{CH}_{2} \mathrm{CH}_{3}+\bullet \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{C}_{4} \mathrm{H}_{10}$	$\mathrm{C}_{4} \mathrm{H}_{12}$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CH}_{2}$		
		(1)		
	$\bullet \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	(1)		
	Penalise missing dots once			
	Allow $\bullet \mathrm{C}_{2} \mathrm{H}_{5}$ for $\bullet \mathrm{CH}_{2} \mathrm{CH}_{3}$			
	Di and tri substitution steps			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)	$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$ Allow $\mathbf{2 \mathrm { C } _ { 2 }} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathbf{2} \mathrm{CH}_{4}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3 (e)	Any two from: (It) produces (more) petrol / gasoline / diesel / jet fuel / LPG / liquid petroleum gas / fuel Short chain alkanes / lighter fractions are more useful products Demand is greater for shorter chain alkanes / lighter fractions / smaller molecules OR converts surplus of low demand fractions It produces ethane / short chain alkenes for making poly(ethene) / ethane-1,2-diol / ethanol / plastics / polymers Smaller alkanes give less pollution/burn more efficiently Recycles waste products As a source of hydrogen NB examiners need to look carefully at the vowel in the middle of alkane / alkene / ethane / ethene if not clear do not give BOD	Points based on atom economy / renewable fuels alone Easier to transport / store Short chain alkenes / ethene more useful alone Recycles alone	2

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	$\mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{HCl}$		$\mathbf{1}$
	OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \cdot$		

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \cdot$ OR $\mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{HCl}$	$\mathbf{1}$	
	N.B. different answers for (i) and (ii) needed		

Question Number	Acceptable Answers	Reject	Mark
4(a)(iii)	$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	$\mathrm{Cl} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{Cl}_{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(a)(iv)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ OR $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathbf{1}$	
N.B. different answers for (iii) and (iv) needed			

Question Number	Acceptable Answers	Reject	Mark
4(b)	First mark: Structural formula (enough to see the structure) of any polyhalogenated ethane derivative OR any polyhalogenated methane derivative	$\mathrm{Butane} / \mathrm{C}_{4} \mathrm{H}_{10} /$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} /$ chlorobutane / hexane / chloromethane	$\mathbf{2}$
	ALLOW correct displayed or skeletal formula	(1)	
Second mark: If first mark awarded the name must be consequentially correct	IGNORE any missing or incorrect numbering in name (e.g. "dichloroethane" scores the mark)	IGNORE missing or incorrect hyphens	If first mark NOT awarded then only ALLOW correct name of any polyhalogenated ethane or polyhalogenated methane derivative

Question Number	Acceptable Answers	Reject	Mark		
4(c)(i)	$\mathbf{1}^{\text {st }}$ mark for HAZARD: This mark is for the idea of: (substance or procedure that) can cause harm/may cause harm/has the potential to do harm/can be dangerous	Just "causes harm"/just "is a danger"	$\mathbf{2}$		
	ALLOW references to specific hazards such as toxic/flammable /harmful/ irritant /corrosive /oxidizing/ carcinogenic for the mark	(1)			
$\mathbf{2}^{\text {nd }}$ mark for RISK: This mark is for the idea of likelihood/probability/chance that harm will result (from the use of a substance or a procedure)	(1)			\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	fume cupboard OR gloves OR u.v. goggles	Just 'open windows'/Just well-ventilated lab/Just 'gas mask'/Just "use of smaller quantities"/close d system/closed experiment	$\mathbf{1}$

