Question Number	Acceptable Answers	Reject	Mark
1 (a)	C _n H _{2n} ALLOW any letter for n	C_2H_{2n} C_nH_{2n+2}	1

Question Number	Acceptable Answers	Reject	Mark
1(b)	Either one of the following options:		3
	CH ₂ CH ₂ + Br ₂ →CH ₂ BrCH ₂ Br 1,2-dibromoethane		
	OR		
	$CH_3CHCH_2 + Br_2 \rightarrow CH_3CHBrCH_2Br$ 1,2-dibromopropane		
	Marking Point 1Correct reactant – ethene or propene(1)		
	Marking Point 2Correct product from the number of carbon atoms in the reactant(1)		
	Marking Point 3Correct name from the number of carbonatoms in the reactant(1)		
	IGNORE punctuation on product		
	ALLOW displayed/ skeletal formulae Penalise molecular formula of product only		
	No TE on name if product incorrect		

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	 (Error 1) the dipole on the chlorine molecule should be the other way round (Error 2) the arrow should be going from the double bond (to the chlorine)/electrons move from the double bond to the chlorine (1) 		3
	(Error 3) the chlorine should have a negative charge (and a lone pair) (1)	Chlorine molecule	

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	Because tertiary carbocation is more stable (than a primary carbocation) OR the positive carbon has more positively- inductive / electron-releasing alkyl groups (to help stabilization than the other carbon of the double bond) IGNORE references to carbon only having three bonds or being electron deficient	Just Secondary carbocation	1

Question Number	Acceptable Answers		Reject	Mark
1(d)	X			2
	OR			
		(1)		
		(1)		

Question Number	Acceptable Answers	Reject	Mark
1(e)	Same molecular formula/same number of atoms/same amount of each element but different (Structural) arrangement (of atoms)/ structure/ structural formulae/ displayed formulae/ skeletal formulae	'in space'	1

Question Number	Acceptable Answers	Reject	Mark
1(f)(i)	Ultraviolet (radiation)/ UV (radiation) / (Sun) light	High temperature	1

Question	Acceptable Answers	Reject	Mark
			2
	CI-CI →2CI•		Z
	OR		
	$CI-CI \to CI \bullet + CI \bullet \tag{1}$		
	Correct use of curly half / 'fish-hook' arrows (1) $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\$		
	Curly half arrows can start from anywhere on		
	the bond and extend beyond the Cl		
	The half arrows can be above or below the		
	bond or a combination of the two.		

Question Number	Acceptable Answers		Reject	Mark
1(f)(iiii)	(First propagation step) $C_4H_8 + CI \bullet \rightarrow HCI + C_4H_7 \bullet$ (Second propagation step) $C_4H_7 \bullet + CI_2 \rightarrow C_4H_7CI + CI \bullet$ The position of \bullet is not essential Penalise lack of \bullet once only	(1) (1)	Reference to H/ H• scores (0)	2

Question Number	Acceptable Answers	Reject	Mark
1 (f)(iv)	Homolytic/ homolytic fission/ homolytic bond fission		1

Question Number	Acceptable Answers	Reject	Mark
1(f)(v)	arking point 1 Two free radicals are combining/reacting with each other/suitable termination equation (1) Marking point 2 The product is a stable species/No free radicals produced/ The product is not a free radical/ Concentration of free radicals decreases / lowers the number of radicals (1)		2

Question Number	Acceptable Answers	Reject	Mark
1(g)	Further substitution/polysubstitution can occur OR Other products such as C ₄ H ₆ Cl ₂ / C ₄ H ₅ Cl ₃ COMMENT: ALLOW Forms C ₄ Cl ₈		1

Acceptable Answers	Reject	Mark
$H = C = C = CH_{3}$ $H = H_{2}$ $H = C = C = C = CH_{3}$ $H = C = C = C = CH_{3}$ $H = C = C = CH_{3}$ $H = CH$		4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
(1) for each correct product		
ALLOW correct displayed / skeletal / semi-skeletal / structural / semi-structural formula in each case ALLOW any order of symbols after or before each carbon ALLOW brackets or no brackets around Br/ CH ₃ for		
	Acceptable Answers $\begin{array}{c} \begin{array}{c} \begin{array}{c} H \\ H $	Acceptable Answers Reject Reject $\downarrow \downarrow $

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)	$H_{3}C H + H_{3}C H $		3
	 First mark Double-headed arrow from alkene must start from somewhere on C=C bond Partial charge on Br₂ molecule must be correct if shown Second mark is for either correct primary or secondary carbocation and is a standalone mark 	Single-headed arrow	
	Third mark Double-headed arrow from bromide ion can start from the minus sign, a lone pair on Br ⁻ , or from the Br and can go to the C or the + sign on the intermediate The negative charge must be present on the bromide ion The final product, if shown, must be correct to gain third mark Mechanisms with other electrophiles (e.g. HBr,	Bromine / bromide free radicals Single-headed arrow (Penalise again)	
	BrOH) can score 2 nd and 3 rd marks		

Question Number	Acceptable Answers	Reject	Mark
2 (c)	First mark is for calculating the theoretical maximum mass of ethene from 9.2 g ethanol:-	(0) for <u>4.2</u> x 100% 9.2	2
	(46 g C_2H_5OH gives 28 g C_2H_4 so 9.2 g C_2H_5OH gives maximum mass of) 5.6 g C_2H_4 (1)		
	Second mark is for calculating the percentage yield from candidate's theoretical maximum mass:-		
	(4.2/5.6 x 100% =) 75 (%) IGNORE s.f. except 1 s.f.		
	OR		
	First mark Amount of ethene = $4.2/28 = 0.15$ (mol) and amount of ethanol = $9.2/46 = 0.20$ (mol) (1)		
	Second mark % yield = 0.15/0.20 = 75 % (1)		
	NOTE Correct answer with no working scores (2)		
	% yield TE on candidate's theoretical mass / moles only if % yield <100%		
	If molar masses are reversed, award one mark for 27.8%		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	Crude oil / petroleum / coal	Oil on its own / Natural gas / fossil fuels / any named fraction of crude oil	1

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	use of high temperatures / heat (in the absence of air) / thermal decomposition / catalysts (1)		2
	Either		
	to break large molecules / to form smaller molecules / to break bonds in large molecules / to break carbon-carbon bonds (1)		
	OR		
	producing alkenes / producing carbon-carbon double bonds (1)		

Question Number	Acceptable Answers		Reject	Mark
3 (a)(iii)	Risks (2) Amendments (2)			4
	Risk	Amendment	Dangorous	
	toxic fumes	Set up in rume cuppoard	Dangerous	
	Escape of flammable / harmful / toxic reactants or products from ill fitting bung	Correct fitting of bung		
	Escape of flammable / harmful /toxic reactants or products from poorly positioned delivery tube	Placement of delivery tube below mouth of test tube / use a longer delivery tube	collect in syringe	
	suck back	Attach Bunsen valve / remove delivery tube from water before stopping heating etc		
	Mark all 4 points independe If escaping gases linked to mentioned then allow 1 for	ently 2 amendments but no risk risk		

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	Reagent - Hydrogen/H ₂ (1) Catalyst - Nickel/Ni/palladium/Pd/platinum/Pt (1) Mark independently		2

Question Number	Acceptable Answers	Reject	Mark
3 (b)(ii)	1,2 - dibromoethane (1)	1,2 - bromoethane dibromoethane	2
	ignore punctuation H H H-C-C-H Br Br (1)	Skeletal formula	
	Mark independently Allow CH ₂ BrCH ₂ Br	$C_2H_4Br_2$	

Question Number	Acceptable Answers	Reject	Mark
3 (b)(iii)	From purple / pink \rightarrow colourless	clear	1

Question Number	Acceptable Answers	Reject	Mark
3 (c)(i)	$\begin{array}{c} H = H \\ H = C = C \\ H \\ H \\$		3
	the intermediate bromide ion must show negative charge allow 2 max for addition of Br ₂ and any other electrophilic additions half headed arrows used throughout penalise only once	ð- on bromide ion for third mark	

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	Bromine / bromide / hydrogen could add to either carbon (in the double bond) / bromide / bromine could add to either primary or secondary carbocation / (propene is unsymmetrical) so could form 1-bromopropane and / or 2-bromopropane. Allow correct structural or displayed formulae.	bromine could add to any of the three carbons	1

Question Number	Acceptable Answers	Reject	Mark
3 (d)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2
	position of hydrogen atoms and phenyl groups (1)		
	Allow phenyl groups on 2^{nd} and 3^{rd} carbon OR 1^{st} and 4^{th} OR 1^{st} and 3^{rd}		
	carbon carbon single bonds and continuation bonds (1)		
	second mark not awarded for incorrect monomer		
	$ \begin{bmatrix} H & C_6H_5, \\ I & I \\ C & C & - \\ I & I \\ H & H & - \\ H & H & - \\ \end{bmatrix} $		
	(1) max with or without square brackets and n or numbers		
	Do not penalise H from phenyl groups attaching to carbon chains		
	Ignore extra square brackets, numbers and 'n' provided 2 monomer units shown		

Question Number	Acceptable Answers	Reject	Mark
3 (e)(i)	Any two		2
	(raw material for) paper cup requires cutting down trees (1)		
	polystyrene cup uses less energy (280 kWh rather than 980 kWh) to produce so less CO ₂ released / less fossil fuels (1)		
	polystyrene cup releases less sulfur based compounds into air so less chance of forming acid rain / less chance of damaging buildings / acidifying lakes (produces 3.5 kg rather than 11 kg) (1)		
	polystyrene cup releases no chlorine compounds which damages ozone layer / poisonous (produce 0 kg rather than 0.4 kg) (1)		
	2 pieces of data chosen with no explanation allow 1 mark		
	Ignore comments regarding water		

Question Number	Acceptable Answers	Reject	Mark
3 (e)(ii)	2 additional factors		2
	 e.g ease of recyclability whether cup is easy to reuse space taken up in landfill type and amount of gases formed if incinerated useful heat obtained if incinerated biodegradeability / how long they take to decompose management of gases produced during decomposition durability / how long the cup lasts method of disposal Ignore comments regarding atom economy Ignore comments regarding acid rain / ozone layer / greenhouse gases unless linked to gases produced during disposal 		