| Question Number | Acceptable Answers | Mark |
| :---: | :---: | :---: |
| 1 (a)(i) | (1) $f r$ carbocation <br> (1) f r arrow <br> (1) for both arrows <br> $1^{\text {st }}$ mark: <br> - top arrow must start from the double bond / close to the double bond and not from either of the C atoms of the $\mathrm{C}=\mathrm{C}$ bond <br> - top arrow can end on, or close to, the H in HBr <br> - lower arrow must start from the bond and not the H atom in HBr <br> REJ ECT full charges on the HBr <br> $\mathbf{2}^{\text {nd }}$ mark: <br> the carbocation must have a full + and not $\partial+$ <br> $3^{\text {rd }}$ mark: <br> - the bromide ion must have a full ${ }^{-}$and not $\partial^{-}$ <br> - the lone pair need not be shown on the $\mathrm{Br}^{-}$ <br> - arrow from bromide ion can start anywhere on the $\mathrm{Br}^{--}$or from the minus sign or the lone pair (if shown) on $\mathrm{Br}^{-}$and can go to the C or the + sign on the intermediate <br> $3^{\text {rd }}$ mark available even if an incorrect intermediate has been drawn | 3 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(a)(ii) |  <br> OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{+}$ |  | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(b)(i) | $\begin{equation*} \mathrm{B} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} / \text { butan-2-ol } \tag{1} \end{equation*}$ <br> Because the C atom bearing the OH is attached to two other C atoms / C with OH group attached to one H (atom) (1) <br> ALLOW Because the C atom bearing the OH is attached to two alkyl groups <br> These marks are stand alone | Just " OH is on the second C atom" / "OH is in the chain, not on the end" <br> OR <br> "OH attached to two methyl / two $\mathbf{C H}_{3}$ groups" <br> $\mathrm{OH}^{-}$(instead of $-\mathrm{OH}$ | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 1(b)(ii) | $\mathrm{C} /\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ /(2-)methylpropan-2-ol (1) <br> Because it is a tertiary (alcohol)/no C-H bonds <br> to break (1) <br> ACCEPT a description of a tertiary alcohol <br> These marks are stand alone | "tertiary <br> structure" / <br> "tertiary <br> carbon" / <br> "tertiary <br> carbocation" | $\mathbf{2}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(b)(iii) | BOTH <br> B / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ / butan-2-ol <br> AND <br> BOTH required for the one mark | Structural / skeletal formula | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 1(b)(iv) | A $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} /$ butan-1-ol <br> and <br> D $/ \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH} /(2-)$ methylpropan-1-ol <br> BOTH needed for one mark | $\mathbf{1}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( v )}$ | Steamy fumes / misty fumes / white mist | White smoke | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( v i ) ~}$ | $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{PCl}_{5} \rightarrow\right) \mathbf{C}_{4} \mathbf{H}_{9} \mathrm{Cl}+\mathrm{POCl}_{3}+\mathbf{H C l}$ <br> $\mathbf{( 1 )}$ for HCl <br> (1) for rest of the equation correct <br> NOTE: Equation must be completely correct for <br> the second mark. <br> ACCEPT " $\mathrm{PCl}_{3} \mathrm{O}$ " instead of $\mathrm{POCl}_{3}$ | $\mathbf{2}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2 (a) | $\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{3} \mathrm{H}_{6}$ <br> ALLOW structural or displayed formulae instead of molecular formulae <br> IGNORE any state symbols, even if incorrect |  | 1 |


$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \text { 2 (b) (ii) } & \text { Electrophilic addition } & & \mathbf{1} \\ & \text { BOTH words needed } \\ \text { ALLOW "heterolytic" before electrophilic addition }\end{array}\right)$

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2 (b) (iii) | $\pi$ bond weaker than $\sigma$ (bond) / less energy needed to break $\pi$ bond <br> ALLOW <br> $\pi$ bond weak(er) / m bond easy to break <br> $\pi$-electrons / $\pi$ bonds (more) accessible (to electrophilic attack) <br> ALLOW <br> high/ higher/ more electron density in m bond (so alkenes more susceptible to electrophilic attack) <br> Mark the two points independently |  | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2 (c) (i) |  <br> both DISPLAYED structures, with ALL bonds and atoms shown <br> major product identified or shown as product in (c)(ii) if NOT identified in (c)(i) <br> NOTE: if only one isomer of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ is named, assume this is the required "labelling" of the major product | $\mathrm{CH}_{3}$ not <br> fully <br> displayed <br> Incorrect name of isomer for 2nd mark | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2 (c) (ii) |   <br> (1) $f r$ carbocation <br> (1) f r arrow <br> (1) frboth arrows <br> $1^{\text {st }}$ mark: <br> Curly arrows must start from the bonds NOT the atoms <br> $3^{\text {rd }}$ mark: <br> Bromide ion must clearly have a $1^{-}$charge to get this mark <br> NOTE: The arrow from the bromide ion can start from anywhere on the $\mathrm{Br}^{-}$ion (including the minus sign) or from a lone pair on $\mathrm{Br}^{-}$if shown <br> Curly arrow can go to the C or the + sign on the intermediate <br> TE for mechanism on the isomer identified in (c)(i) or either mechanism if no major product has been identified in (c)(i) <br> Mark the three points independently | half <br> arrow- <br> heads $\mathrm{Br}^{\partial-}$ | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c ) \text { (iii) }}$ | Secondary carbocation (named or described or <br> drawn) | Answers just in terms <br> of Markownikoff's rule | $\mathbf{2}$ |
|  | more stable (than primary) <br> Mark the two points independently | (1) |  |
| NOTE: Zero awarded if primary carbocation <br> thought to be more stable |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2 (d) (i) |  <br> Two " $n$ 's" in the equation and a correct formula (molecular or structural) for propene on left hand side of the equation <br> Correct repeating unit, with a methyl branch shown <br> ALLOW $\mathrm{CH}_{3}$ fully displayed or just as $\mathrm{CH}_{3}$ <br> Continuation bond at each end (with or without bracket shown in equation) <br> Unsaturated polymer scores max <br> Mark the three points independently | "x" instead of " $n$ " | 3 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2 (d) (ii) | (Advantage): <br> polypropene will decompose (naturally) <br> ALLOW "rot" or "break down" <br> OR <br> polypropene will not require landfill (as it can decompose in sunlight) <br> OR <br> no need to incinerate / burn <br> IGNORE "good for environment" / "no pollution" <br> (Disadvantage): <br> poly(propene) cannot be used when exposed to (bright) sunlight / UV / outdoors <br> OR <br> cannot be recycled / cannot be reused <br> Mark the two points independently | "Can be recycled" (0) for first scoring point <br> Biodegradable for $1^{\text {st }}$ mark <br> Answers which do not imply exposure to UV/ sunlight <br> Biodegradable for $2^{\text {nd }}$ mark | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( a )}$ | $\left(\mathrm{C}_{n} \mathrm{H}_{2 n}\right.$ could be a) <br> ring / cyclic (compound) <br> ALLOW identification of any specific <br> cyclic compound (e.g. cyclohexane) | $\mathbf{1}$ |  |
| IGNORE any reference to "fewer <br> hydrogen atoms" |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(b)(i) | All must be correct for the mark |  | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 3(b)(ii) | First mark:- <br> An equation with the reactants shown <br> correctly and EITHER 2-bromopropane <br> OR 1-bromopropane shown as the <br> product | $\mathbf{2}$ |  |
|  | NOTE: The C-Br bond MUST be shown <br> in the skeletal formula for the first <br> mark | (1) |  |
| Second mark (stand alone, even if |  |  |  |
| no equation attempted or left-hand |  |  |  |
| side of equation incorrect):- |  |  |  |
| Correct skeletal formula of |  |  |  |
| 2-bromopropane |  |  |  |
| Penalise lack of skeletal formulae once |  |  |  |
| only in (b)(i) and (b)(ii) when taken |  |  |  |
| together |  |  |  |$\quad$


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(c) | attack of bromide ion (1) <br> First mark: <br> Curly arrow from $\mathrm{C}=\mathrm{C}$ to H (in $\mathrm{H}-\mathrm{Br}$ ) AND curly arrow from bond in $\mathrm{H}-\mathrm{Br}$ to the Br IGNORE polarity of HBr even if incorrect <br> Second mark: <br> Structure of correct secondary carbocation <br> Third mark: <br> Curly arrow from anywhere on the bromide ion towards the $\mathrm{C}+$ on the carbocation <br> NOTE: The bromide ion must have a full negative charge, but the lone pair of electrons on the $\mathrm{Br}^{-}$ NEED NOT be shown <br> NOTE: A correct mechanism leading to the formation of 1-bromopropane scores the first and third marks only (so max (2)) <br> Skeletal formulae can be used | Full + and charges on HBr <br> Extra / <br> spare bond dangling from the C+ carbon <br> $\delta^{-}$on bromide ion instead of $\mathrm{Br}^{-}$ | 3 |


|  | If but-2-ene is the starting alkene, only 3 3 <br> can be awarded |  |  |
| :--- | :--- | :--- | :--- |
|  | If but-1-ene is the starting alkene, $2^{\text {nd }}$ and $3^{\text {rd }}$ <br> marks can be awarded | If single-headed arrows used throughout but <br> all else correct, then max (2) can be awarded <br> for mechanism |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(a) | Allow formulae throughout instead of names | Smokiness of flame | $\mathbf{2}$ |
|  | Test : add bromine (water) /bromine solution <br> ALLOW bromine gas /bromination (1) <br> Result: no change with hexane / stays orange <br> brown/ stays red brown/ stays yellow <br> and <br> goes colourless with hex-1-ene(1) <br> $\mathbf{2}^{\text {nd mark cq on 1st }}$ <br> OR <br> Test : add (acidified) potassium <br> manganate((VII)) (solution) (1) <br> ALLOW potassium permanganate for potassium <br> manganate(VII) <br> Result: no change with hexane/stays purple <br> and <br> goes colourless / brown with hex-1-ene (1) <br> OR <br> Test : add alkaline potassium manganate((VII)) <br> (solution) (1) <br> ALLOW potassium permanganate for potassium <br> manganate(VII) <br> Result: no change with hexane/stays purple <br> and <br> goes green with hex-1-ene (1) | Goes clear |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(i) | CH3 <br> ALLOW Partially or fully displayed as long as <br> the two H are trans <br> Allow bonds which go closer to the H than to C <br> of alkyl groups on l.h.s. | $\mathbf{1}$ |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(b)(ii) | QWC <br> $\mathrm{C}=\mathrm{C}$ restricts rotation/ $\mathrm{C}=\mathrm{C}$ prevents twisting / $\mathrm{C}=\mathrm{C}$ can't rotate/ lack of free rotation round $\mathrm{C}=\mathrm{C}$ (so the groups can't change position relative to the bond) (1) <br> Hex-2-ene has different groups on the $C$ at each end of $\mathrm{C}=\mathrm{C} /$ hex-1-ene has 2 hydrogens on the $C$ at one end of $C=C$ / hex-1-ene doesn't have different groups on the $C$ at one end of $C=C /$ hex-1-ene has no group which takes priority on the $C$ at one end of $C=C$ (1) (answer can be considered from either hex-1ene or hex-2-ene) | Alkenes can't rotate Double bond is fixed Bonds can't rotate <br> Double bond is on first carbon (unless further explanation) | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(c)(i) | ignore signs <br> $(50 \times 46 \times 4.18)=9614(\mathrm{~J}) /$ <br> $9.614 \mathrm{~kJ}($ if converted to kJ units must be <br> stated) <br> ALLOW $9610 / 9600 / 9.61 \mathrm{~kJ} / 9.6 \mathrm{~kJ}$ | $(50.32 \times 46 \times 4.18)=$ <br> $9676(\mathrm{~J})$ | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(c)(ii) | One mark each for moles of hexane energy change sign, units, 2 sig figs (for energy change calculated) $\begin{aligned} & \text { Moles hexane }=0.32 / 86=\left(3.72 \times 10^{-3}\right)(1) \\ & \left(9614 / 3.72 \times 10^{-3}\right)=2584000 \mathrm{~J} / 2584 \mathrm{~kJ}^{(1)}(1) \\ & \Delta H=-2600 \mathrm{~kJ} \mathrm{~mol}^{-1} /-2600000 \mathrm{~J} \mathrm{~mol}^{-1} / \\ & -2.6 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ <br> Allow TE: <br> 0.32 g in (i) (gives 61.53 J ), $\Delta H=-17 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $/-17000 \mathrm{~J} \mathrm{~mol}^{-1} /-1.7 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1}$ <br> 50.32 g in (i) (gives 9676J) $\Delta H=-2600 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $/-2600000 \mathrm{~J} \mathrm{~mol}^{-1} /-2.6 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1}$ <br> Rounding of moles to $4 \times 10^{-3}$ gives -2400 kJ $\mathrm{mol}^{-1}$ or-15 kJ mol${ }^{-1}$ max 2 (loses moles mark) <br> Answer alone (3) <br> Max 2 if negative sign missing and/or more than 2 sf or error in units |  | 3 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(c)(iii) | Any 2 from: <br> - Heat losses (from calorimeter)/ poor insulation <br> - Incomplete combustion/burning <br> - Incomplete transfer of heat/ loss by convection <br> - Evaporation of fuel (after weighing) <br> - Heat capacity of calorimeter (not included)/ heat absorbed by calorimeter <br> - Measurements not carried out under standard conditions $/ \mathrm{H}_{2} \mathrm{O}$ is gas, not liquid, in this experiment | Just "energy losses" <br> Not all hexane burns <br> Data books give average values <br> Hexane is impure <br> Human error | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(c)iv) | Error in reading temperature is less than the <br> effect of ignoring heat loss etc | Using $0.1^{\circ} \mathrm{C}$ <br> thermometer gives a <br> more precise reading <br> but does not improve <br> accuracy | $\mathbf{1}$ |
|  | ALLOW <br> Other errors are greater than error in <br> temperature reading / <br> Readings are within margins of error/ <br> The accuracy with the thermometer is not <br> significantly different from other measurement <br> errors / <br> $0.1^{\circ} \mathrm{C}$ is insignificant compared to temperature <br> change / <br> Using $0.1^{\circ} \mathrm{C}$ thermometer does not change <br> significant figures in final answer / <br> Using $0.1^{\circ} \mathrm{C}$ thermometer does not reduce <br> errors |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(d)(i) | Nickel / Ni <br> Finely divided nickel/ Raney nickel <br> ALLOW Platinum /Pt <br> Palladium/ Pd <br> Rhodium/ Rh | Zeolite <br> Carbon <br> Hydrogen <br> Uv light | $\mathbf{1}$ |
| Accept one of the above answers combined <br> with a comment such as "at high temperature", <br> "heat also needed", "under pressure", "lumps <br> of", "powdered" | Accept combinations of above answers eg Pt <br> and Pd |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(d)(ii) | Left hand arrow, pointing down, labelled $\Delta H_{c}$ hex-1-ene $+\Delta H_{c}$ hydrogen/ -4003-286/-4289 OR <br> Pointing up with signs given above reversed (1) <br> Right hand arrow pointing down labelled $\Delta H_{c}$ <br> hexane / -4163 <br> OR <br> Pointing up with signs given above reversed (1) <br> Ignore oxygen on both arrows <br> Arrows may be labelled $\Delta H_{1}$ etc if key given or use of numbers in calculation makes this obvious. <br> $\left(\Delta H_{\text {reaction }}-4163=-4003-286 /\right.$ or words applying Hess' law correctly) <br> $\Delta H_{\text {reaction }}=-126$ however obtained $(1)$ <br> TE: If arrows point up and signs are not reversed $\Delta H_{\text {reaction }}=+126 \quad \operatorname{Max}(1)$ |  | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(d)(iii) | Same (number and type of) bonds are broken <br> and made in each reaction / one C=C (and one <br> $\mathrm{H}-\mathrm{H})$ are broken and two C-H made | All are alkenes going <br> to alkanes | $\mathbf{1}$ |
| ALLOW <br> reaction is $-\mathrm{CH}=\mathrm{CH}-+\mathrm{H}_{2} \rightarrow-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - each time <br> (Similar energy change) as in each case $\mathrm{H}_{2}$ <br> reacts with $\mathrm{C}=\mathrm{C}$all have the same <br> double bond which <br> reacts in the same <br> way |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(a)(i) | Reagent: chlorine/ $\mathrm{Cl}_{2}$ (1) <br> Condition: uv/ sunlight (1) <br> ALLOW light <br> Mark independently <br> lgnore reference to temp and pressure if given <br> with uv light. <br> If answers reversed/both on one line 1 out of 2 | Cl <br> Just "heat" | $\mathbf{2}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(a)(ii) | (free) radical (1) <br> Substitution (1) <br> Mark independently |  | $\mathbf{2}$ |

