1 The repeat unit for poly(propenamide) is

2 The structures of three amino acids are shown in the table.

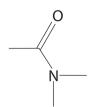
Amino acid	Structure
cysteine	HSCH ₂ CH(NH ₂)COOH
glycine	H ₂ NCH ₂ COOH
threonine	CH ₃ CH(OH)CH(NH ₂)COOH

The tripeptide glycine-cysteine-threonine is

A	H ₂ NCH ₂ CONHCH(CH(OH)CH ₃)CONHCH(CH ₂ SH)COOH
	11/11/2011/2011/21/2011/21/3/2011/21/2011

(Total for Question = 1 mark)

3 The amino acid alanine, H₂NCH(CH₃)COOH, exists as a solid at room temperature.


The most important reason for this is that it

■ A exists as a zwitterion.

B forms hydrogen bonds.

■ D has strong London forces.

4 The skeletal formula of an organic compound is shown below.

This compound is

- **A** an amino acid.
- **B** an amide.
- □ C a primary amine.
- **D** a secondary amine.

5 In an aqueous solution with a pH of 7, the amino acid alanine exists mainly as

$$\begin{array}{c} & \text{HO} \\ & \\ \blacksquare \text{ A} \\ & \text{H}_2\text{N}-\text{CH} \\ & \text{CH}_3 \end{array}$$

$$C=0$$

$$H_2N-CH$$

$$CH_3$$

$$\begin{array}{c} & & \text{HO} \\ & & \text{C} \\ & & \text{C} \\ & & \text{H}_{3} \mathring{\text{N}} - \text{CH} \\ & & \text{CH}_{3} \end{array}$$

$$C=0$$

$$H_3N-CH$$

$$CH_3$$

6 Excess dilute sulfuric acid is added to phenylamine. What is the product of the reaction?

7	Butylamine ($T_b = 77.8$ °C) has a higher boiling temperature than propylamine ($T_b = 47.7$ This is because the	
	⊠ A	hydrogen bonds of butylamine are stronger than the hydrogen bonds of propylamine.
	⊠ B	London forces of butylamine are stronger than the hydrogen bonds of propylamine.
	⊠ C	London forces of butylamine are stronger than the London forces of propylamine.
	⊠ D	C—H bonds of butylamine are stronger than the C—H bonds of propylamine.
		(Total for Question = 1 mark)

8 The monomer of the addition polymer poly(propenamide) is ${\rm CH_2}$ — ${\rm CHCONH_2}$. The repeat unit of the polymer is

X A

$$\begin{bmatrix} O \\ \parallel \\ C \\ \parallel \\ CH_2 \\ \end{bmatrix}$$

X E

⊠ C

⊠ D

9 In an aqueous solution with a pH of 12, the amino acid alanine exists mainly as

$$HO$$
 $C = O$
 $H_2N - CH$
 CH_3

HO
$$C = O$$
 $C = O$
 $C = O$
 $C = O$
 $C = O$
 $C = O$

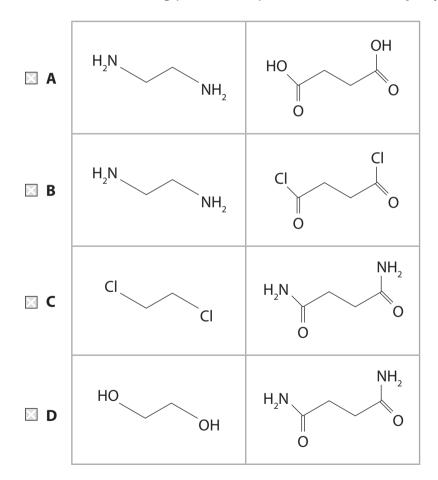
$$\begin{array}{c}
-O \\
\square \quad \mathbf{D} \\
H_3 \stackrel{\uparrow}{\mathsf{N}} - \mathsf{CH} \\
\mathsf{CH}_3
\end{array}$$

10 A section of the polypeptide made from a single amino acid is shown below.

The polypeptide was heated with excess dilute sodium hydroxide solution until no further change took place.

Which of the following products is formed?

- 11 Which of the following pairs of compounds could form a polyamide?


 - \blacksquare **B** HO—CH₂—CH₂—OH and $\begin{array}{c} O \\ C CH_2 CH_2 C \\ H_2N \end{array}$ NH₂

(Total for Question = 1 mark)

- **12** Methylamine, CH₃NH₂, is **very** soluble in water. This is because it
 - ☑ A forms hydrogen bonds with water.
 - ☑ B forms London forces with water.
 - **C** exists mainly as ions in aqueous solution.
 - **D** exists as a zwitterion.

13 The structure below shows the repeating pattern of a polymer.

Which of the following pairs of compounds could react **rapidly** to form this polymer?

14 Which of the following structures best represents the amino acid, alanine, in an aqueous solution with a pH of 12?

$$HO$$
 $C=O$
 H_2N-CH
 CH_3

15 Which of the following is true for all amino acids?

All amino acids

- **A** exist as optical isomers.
- **B** are neutral in solution.
- **C** are essential to life.
- **D** are crystalline solids at room temperature.

(Total for Question = 1 mark)

- 16 In order to make CH₃CH₂CONHCH₃, you could use
 - \square **A** CH₃CH₂COOCH₃ + NH₃
 - \blacksquare **B** CH₃CH₂COCl + CH₃NH₂
 - \square C CH₃CH₂COO $^-$ Na $^+$ + CH₃NH₂
 - \square **D** CH₃CH₂CONH₂ + CH₃NH₂

(Total for Question 1 mark)

17 Benzocaine is used as a local anaesthetic.

Separate samples of a solution of benzocaine are added to 2,4-dinitrophenylhydrazine, hot aqueous sodium hydroxide, and dilute hydrochloric acid.

Which chemicals react with benzocaine?

- **A** All three
- **B** Only sodium hydroxide and hydrochloric acid
- C Only hydrochloric acid
- **D** Only sodium hydroxide

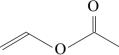
18 Four polymers labelled A to D have the following formulae:

$$\mathbf{A} = \begin{pmatrix} O & O & & H \\ \parallel & \parallel & & | \\ C & (CH_2)_4 & C & N & (CH_2)_6 & N \\ & & | & & \\ & & H & & \end{pmatrix}_n$$

$$\mathbf{B} = \begin{pmatrix} H & OH & H & OH \\ | & | & | & | \\ C & C & C & C \\ | & | & | & | \\ H & H & H & H \end{pmatrix}_n$$

$$\mathbf{C} = \begin{pmatrix} H & OOCCH_3 & H & OOCCH_3 \\ | & | & | & | & | \\ C & C & C & C \\ | & | & | & | & | \\ H & H & H & H & H \end{pmatrix}_n$$

$$\mathbf{D} \qquad \begin{pmatrix} H & CH_3 & H & CH_3 \\ | & | & | & | \\ C & C & C & C \\ | & | & | & | \\ H & H & H & H \end{pmatrix}_n$$


(a) Which polymer is most soluble in hot water?

(1)

- \mathbf{X} A
- \mathbf{X} **B**
- \mathbf{K} C
- \boxtimes D

(b) Which polymer is formed from the monomer shown below?

O (1)

- \mathbf{X} A
- \boxtimes B
- \square C
- \times D
- (c) Which polymer is a condensation polymer?

(1)

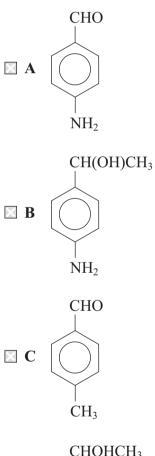
- \mathbf{X} A
- \blacksquare B
- \square C
- \boxtimes **D**

19	Ammonia (NH ₃), butylamine (CH ₃ CH ₂ CH ₂ CH ₂ NH ₂) and phenylamine (C ₆ H ₅ NH ₂) all form alkaline solutions in water. The order of increasing pH of equimolar solutions is	
	\boxtimes A	$C_6H_5NH_2 < CH_3CH_2CH_2CH_2NH_2 < NH_3$
	\boxtimes B	$NH_3 < CH_3CH_2CH_2CH_2NH_2 < C_6H_5NH_2$
	区 C	$C_6H_5NH_2 < NH_3 < CH_3CH_2CH_2CH_2NH_2$
	\square D	$CH_3CH_2CH_2CH_2NH_2 < NH_3 < C_6H_5NH_2$
		(Total for Question 1 mark)
20) Amino	acids are crystalline solids with a high melting temperature because
	\boxtimes A	each molecule has a large number of electrons.
	\boxtimes B	each molecule forms hydrogen bonds at both ends.
		a proton is transferred from one end of the molecule to the other.
	\boxtimes D	their shape allows the molecules to pack close together.
		(Total for Question 1 mark)
21	Compo	anic compound \mathbf{X} is much more soluble in dilute hydrochloric acid than in water. and \mathbf{X} forms a coloured complex with aqueous copper(II) ions.
	Compo	and ${f X}$ could be
	\boxtimes A	C ₆ H ₅ COOH
	\boxtimes B	$C_6H_5NO_2$
	⊠ C	$C_6H_5NH_2$
	\boxtimes D	C_6H_5OH
		(Total for Question = 1 mark)

22 1-butylamine, CH ₃ CH ₂ CH ₂ CH ₂ NH ₂ , reacts with ethanoyl chloride to form		
	\boxtimes A	CH ₃ CH ₂ CH ₂ CH ₂ NH ₃ ⁺ Cl ⁻
	\square B	CH ₃ CH ₂ CH ₂ CH ₂ NHCOCH ₃
	\square C	CH ₃ CH ₂ CH ₂ CH ₂ NHCH ₂ CH ₃
	■ D	CH ₃ CH ₂ CH ₂ CH(COCH ₃)NH ₂
		(Total for Question = 1 mark)
23	Glycine it is ver	e, H ₂ NCH ₂ COOH, is a solid that has a melting temperature of about 250 °C, and y soluble in water. This is because of the
	■ A	formation of intermolecular hydrogen bonds in the solid and hydrogen bonds with water.
	⋈ B	
		formation of $H_3N^+CH_2COO^-$ ions which interact strongly with each other in the solid and with water.
	区 C	
	□ C□ D	solid and with water. dissociation of the molecule to form $H_2NCH_2COO^-$ and H^+ ions in the solid and

24 Which of the following products is formed when phenylamine (aniline) is reacted with dilute sulfuric acid?

$$\square$$
 A \bigcap NO_2


$$\boxtimes$$
 B \bigcirc SO₃H

$$\begin{array}{c|c} NH_2 \\ \hline \\ D \\ \hline \\ SO_3H \\ \end{array}$$

25 An organic compound, X, shows the following properties:

- Oxidation of compound **X** produces a substance that reacts with 2,4-dinitrophenylhydrazine to give a yellow precipitate but does **not** react with Fehling's or Benedict's solution.
- Compound **X** reacts with ice-cold nitrous acid to form a compound that gives a yellow precipitate with an alkaline solution of phenol.

What is the formula of compound X?

26 The organic product of the reaction between ethanoyl chloride and methylamine has the formula

- O CH₃NHCH₂C Cl
- O CH₃CH(NH₂)C Cl
- \bigcirc CH₃C NH₂ O \bigcirc D CH₃C NHCH₃

(Total for Question 1 mark)

- 27 In the solid state, the amino acid serine exists in the form
 - \triangle A H₃N⁺CH(CH₂OH)COOH
 - H₃N⁺CH(CH₂OH)CO₂⁻ \boxtimes B
 - \square C H₂NCH(CH₂OH)COOH
 - H₂NCH(CH₂OH)CO₂⁻ \boxtimes **D**

28) т	'ha 1	hast mathed for congreting a mixture of amine saids in solution is
20			best method for separating a mixture of amino acids in solution is
	×	A	distillation.
	X	В	solvent extraction.
	X	C	chromatography.
	X	D	recrystallization.
			(Total for Question 1 mark)
29	Wl	hich	of these compounds will not form an amide in a reaction with ethanoyl chloride?
	X	A	NH_3
	×	В	CH ₃ CH ₂ NH ₂
	X	C	CH ₃ CH ₂ NH(CH ₃)
	X	D	$CH_3CH_2N(CH_3)_2$
			(Total for Question 1 mark)
30			of the following reagents could be used to produce propanamide, I ₂ CONH ₂ ?
	X	A	Ammonia and 1-chloropropane
	X	В	Ammonia and propanoyl chloride
	X	C	Methylamine and 1-chloropropane
	X	D	Methylamine and propanoyl chloride
			(Total for Question = 1 mark)