Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	All carbon to carbon bonds same length/ longer C-C and shorter C=C not present		1
IGNORE Just "benzene has a delocalised ring" Benzene does not have C=C double bonds Any references to shape/ bond angles			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i}$	$(3 \times-118)=-354\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	First mark Relative levels with names or formulae Second mark Value -149 (kJ mol ${ }^{-1}$) + arrow in correct direction ALLOW double-headed arrow TE from value in (b)(ii) IGNORE $3 \mathrm{H}_{2}$ if shown / cyclohexene / other arrows/values	Diagram inverted scores 0 $+149$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) * (i i i) ~}$	The p/pi-/ $\Pi / 6$ electrons (of carbon) are delocalised in benzene (but not in (1)		2

Question Number	Acceptable Answers	Reject	Mar k
1(c)	First mark: $\mathrm{FeBr}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{FeBr}_{4}^{-}+\mathrm{Br}^{+}$ OR $\mathrm{Br}-\mathrm{Br}+\mathrm{FeBr}_{3} \rightarrow \mathrm{Br}^{\delta+} \ldots . \mathrm{Br}^{\delta-} \mathrm{FeBr}_{3}$ Ignore state symbols even if wrong Second, third and fourth marks: Either Arrow from benzene ring electrons (from inside the hexagon) to $\mathbf{B r}^{+} / \mathbf{B r}^{\delta+}\left(\ldots . . \mathrm{Br}^{\delta-} \mathrm{FeBr}_{3}\right)$ (1) Correctly drawn intermediate with delocalisation covering at least three carbon atoms, but not the carbon atom bonded to the bromine, with the positive charge shown inside the horseshoe The bonds to H and Br may be dotted Arrow from / close to $\mathrm{C}-\mathrm{H}$ bond to inside the hexagon and $\mathrm{H}^{+} / \mathrm{HBr}$ as product	Gap in wrong place	4
	Use of Kekulé structure for benzene and intermediate with arrow from $\mathrm{C}=\mathrm{C}$ double bond to $\mathbf{B r}^{+} / \mathbf{B r}^{\delta+}\left(\ldots . \mathrm{Br}^{\delta-} \mathrm{FeBr}_{3}\right)$ Correctly drawn intermediate with + charge on the C atom next to the C bonded to H and Br		

| | The bonds to H and Br may be dotted (1)
 Arrow from / close to $\mathrm{C}-\mathrm{H}$ bond to bond beside
 + charged C and $\mathrm{H}^{+} / \mathrm{HBr}$ as product (1)
 Each marking point is independent | |
| :--- | :--- | :--- | :--- |

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 (d) (i)}$	Bromine goes colourless OR It/the mixture goes from brown to colourless	Goes clear	2	
ALLOW Red-brown/ Orange/ yellow/ combinations of these colours	Red to colourless			
Bromine is decolorised	(1)	Bromine is discoloured White precipitate/solid forms / Steamy fumes IGNORE Antiseptic smell Gets hot	(1)	Effervescence

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d) (i i)}$		2	
Organic product with structure shown (1) Rest of equation correct ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ or Kekule for phenol $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br} \mathrm{Br}_{3} \mathrm{OH}+3 \mathrm{HBr}$ Scores MP2 only Substitution of 1 Br or 2 Br in any position in balanced equation scores $\mathrm{MP2}$ only.			

Question Number	Acceptable Answers	Reject	Mark
*1(d)(iii)	Lone pair of electrons on oxygen (may be shown on a diagram) and EITHER overlaps with pi cloud OR Feeds into / donates into / interacts with benzene ring (1)	OH group overlaps	2
	Activating benzene ring / increasing 'making it electron density of ring / making attack by electrophiles easier (1) moreactive'.	COMMENT 'Lone pair of electrons on oxygen increases electron density of ring' scores (2) ALLOW benzene becomes a better nucleophile for MP2	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i)}$	Addition / reduction / free-radical addition IGNORE references to 'hydrogenation'	'redox' 'electrophilic addition' 'nucleophilic addition'	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(a)Iii)	mark: Delocalization (of п/p electrons in benzene ring) IGNORE reference to 'resonance'		$\mathbf{2}$
	Second mark: Results in more energy needed to break the bonds in benzene (compared with three separate п (1) bonds) ALLOW confers stability on the molecule / makes benzene more stable (than expected) IGNORE Reference to carbon-carbon bond lengths Values of any enthalpy changes Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	First mark: For " 4 " Second mark: Product as above / correct skeletal formula of product ALLOW Side chain written as $-\mathrm{C}_{2} \mathrm{H}_{5}$ Third mark: -328 ($\mathrm{kJ} \mathrm{mol}^{-1}$) NOTE One H_{2} added showing a CQ correct product with only side chain reduced and $\mathrm{cq} \Delta \mathrm{H}=-120\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (2) Three H_{2} added showing a CQ correct product with only the benzene ring reduced and cq $\Delta H=-208\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores Five H_{2} added with fully correct product drawn and $\Delta \mathrm{H}=-448$ ($\mathrm{kJ} \mathrm{mol}^{-1}$) scores Three and a half H_{2} added showing a fully correct product and $\Delta \mathrm{H}=-268 /-293(.3)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ scores NOTE Mark scoring points independently		3

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	Mark awarded for displaying		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	Electrophilic substitution		$\mathbf{1}$
	BOTH words needed IGNORE references to 'acylation' and /or 'Friedel-Crafts'		

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	Friedel and Crafts BOTH names are needed for this mark		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(b)(iv)	First mark: $\begin{equation*} \mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C O C I}+\mathrm{AlCl}_{3} \rightarrow \mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C O}^{+}+\mathrm{AlCl}_{4}^{-} \tag{1} \end{equation*}$ + can be anywhere on the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$ in the equation for the first mark NOTE: If ethanoyl chloride or any other acid chloride or the generic RCOCl is used instead of benzoyl chloride, no first mark can be awarded but the 2nd, 3rd and 4th marks can be awarded consequentially Second mark: First curly arrow, as shown, to start from inside the hexagon to the correct $\mathrm{C}+$ carbon (i.e. not to the benzene ring) Note the + must be on the C of the $\mathrm{C}=\mathrm{O} / \mathrm{CO}$ for this mark Third mark: Intermediate correctly drawn NOTE + ca be shown anywhere in the ring or at the C atom where electrophile is bonded. The 'horseshoe' in the intermediate to cover at least three carbon atoms Fourth mark: Second curly arrow as shown from CH bond to reform the ring, not from the H atom in this bond NOTE Products do not have to be shown nor the equation for regeneration of the catalyst given		4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (v)}$	Absorbs / reflects / blocks / protects from / shields against / uv (light/ radiation) IGNORE 'non-toxic' / references to IR	adsorbs uv light	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i)}$	$(3 \times-120)=-360\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	No sign or + sign in answer, ie $360 /+360$	$\mathbf{1}$
	Any other wrong units IGNORE $\Delta \mathrm{H}$, and case of letters in units e.g allow Kj	$\Delta \mathrm{E}$	

Question Number	Acceptable Answers	Reject	Mark
*3(a)(ii)	- (Bonding in) benzene/it is more stable (than Kekule) by 152 kJ mol^{-1} (consequential on (a)(i)) IGNORE sign - $\pi / \mathbf{p} /$ double bond electrons are delocalized (around the ring) OR six p electrons shared between six (ring) carbon atoms OR delocalized because of overlap of \mathbf{p} orbitals OR resonance hybrid of $\mathrm{C}=\mathrm{C}$'s and C-C's - Substitution reactions (rather than addition) NOTE: Nucleophilic substitution negates the substitution mark because it is wrong additional information - Maintains/regains delocalized system OR maintains/regains stability OR maintains/regains stabilization energy	Attack by electrophiles with no mention of substitution	4

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	Concentrated nitric acid/ HNO_{3} Concentrated sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ Allow conc or c. in place of 'concentrated' ALLOW Concentrated nitric acid and sulfuric acid OR Concentrated HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ Second mark depends on nitric acid Max. (1) if no mention of concentrated Nitric acid and concentrated sulfuric acid scores (1) NOTE: conc. HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ scores (1) but conc. HNO_{3} and conc $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ scores (2)	Concentrated hydrochloric acid	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i i)}$	Electrophile/electrophilic	Acid Base Oxidizing agent Reducing agent	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	$\mathrm{Br}_{2}+\mathrm{FeBr}_{3} \rightarrow \mathrm{FeBr}_{4}^{-}+\mathrm{Br}^{+}$ OR $\begin{equation*} \mathrm{Br}-\mathrm{Br}+\mathrm{FeBr}_{3} \rightarrow \mathrm{Br}^{\delta+} \ldots . \mathrm{Br}^{\delta-} \mathrm{FeBr}_{3} \tag{1} \end{equation*}$ IGNORE state symbols even if wrong Arrow from benzene ring electrons (from inside the hexagon) to $\mathbf{B r}^{+} / \mathbf{B r}^{\mathbf{\delta}+}\left(\ldots . \mathrm{Br}^{\delta-} \mathrm{FeBr}_{3}\right)$ Correctly drawn intermediate with delocalization covering at least three carbon atoms, but not the carbon atom bonded to the bromine with the positive charge shown inside the hexagon The bonds to H and Br may be dotted Arrow from or close to bond to H to centre of ring and $\mathrm{H}^{+} / \mathrm{HBr}$ as a product ALLOW Kekulé structure for benzene and intermediate Each marking point is independent	lack of charges	4

Question Number	Acceptable Answers	Reject	Mark
3(b)(iv)	 OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$ accept: displayed $-\mathrm{SO}_{3} \mathrm{H}$ $\begin{aligned} & -\mathrm{SO}_{3}-\mathrm{H}^{+} \\ & -\mathrm{SO}_{2} \mathrm{OH} \end{aligned}$ If two formulae are given both must be correct Penalise if bond clearly goes to O or H rather than S Benzenesulfonic acid ALLOW phenyl sulfonic acid	Benzenesulfuric acid/benzosulfonic acid/benzylsufonic acid	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i)}$	Non-bonding/ lone pair electrons from oxygen...	..from methyl/methoxy	$\mathbf{3}$
	(1)are delocalized/incorporated/donated into the ring (electron system) (Could be shown in diagram) OR increases electron density on the ring (1)		
makes it (the ring) more susceptible to electrophilic attack/makes it (the ring) a better nucleophile	Makes it more electronegative		

Question Number	Acceptable Answers	Reject	Mark
3(d)	(Chloromethyl)benzene/chloromethylbenzene/ chlorophenylmethane/ benzyl chloride OR dichloromethane ALLOW phenylchloromethane Aluminium chloride ACCEPT formulae eg $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, AlCl_{3} ACCEPT other halogen carriers eg $\mathrm{FeCl}_{3} /$ iron(III) chloride/ ZnCl_{2} ACCEPT bromine in place of chlorine for either/both marks Correct formula and wrong name or correct name and wrong formula or any other wrong additional information loses mark	$\mathrm{CH}_{2} \mathrm{Cl}$	2

