Question Number	Acceptable Answers	Reject	Mark
1(a)	All carbon to carbon bonds same length/ longer C-C and shorter C=C not present		1
	IGNORE Just "benzene has a delocalised ring" Benzene does not have C=C double bonds Any references to shape/ bond angles		

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i	(3 x -118) = -354 (kJ mol ⁻¹)		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	X (205-354) = -149 (kJ mol ⁻¹) Benzene	Diagram inverted scores 0	2
	Cyclohexane		
	First mark Relative levels with names or formulae (1)		
	Second mark Value –149 (kJ mol ⁻¹) + arrow in correct direction ALLOW double-headed arrow (1)	+149	
	TE from value in (b)(ii) IGNORE 3H ₂ if shown / cyclohexene / other arrows/values		

Question Number	Acceptable Answers	Reject	Mark
1(b)*(iii)	The p/pi-/Π/6 electrons (of carbon)(1)are delocalised in benzene (but not in X)(1)		2

The bonds to H and Br may be dotted (1)	
Arrow from / close to C-H bond to bond beside + charged C and H ⁺ / HBr as product (1)	
Each marking point is independent	

Question Number	Acceptable Answers		Reject	Mark
1(d)(i)	Bromine goes colourless OR It/the mixture goes from brown colourless	to	Goes clear	2
	ALLOW Red-brown/ Orange/ yellow/ combinations of these colours		Red to colourless	
	Bromine is decolorised	(1)	Bromine is discoloured	
	White precipitate/solid forms / Steamy fumes	(1)	Effervescence	
	IGNORE Antiseptic smell Gets hot			

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	$\begin{array}{c} OH \\ + Br_{2} \\ \hline Br \\ Br \\ \end{array} + HBr \\ HBr$		2

Question Number	Acceptable Answers	Reject	Mark
*1(d)(iii)	Lone pair of electrons on oxygen (may be shown on a diagram) and EITHER overlaps with pi cloud OR Feeds into / donates into / interacts with benzene ring	OH group overlaps	2
	 (1) Activating benzene ring / increasing electron density of ring / making attack by electrophiles easier (1) COMMENT 'Lone pair of electrons on oxygen 	Just 'making it more reactive'.	
	increases electron density of ring' scores (2) ALLOW benzene becomes a better nucleophile for MP2		

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	Addition / reduction / free-radical addition IGNORE references to 'hydrogenation'	'redox' 'electrophilic addition' 'nucleophilic addition'	1

Question Number	Acceptable Answers	Reject	Mark
2(a)Iii)	mark:Delocalization (of π/p electrons in benzene ring)(1)		2
	IGNORE reference to 'resonance'		
	Second mark: Results in more energy needed to break the bonds in benzene (compared with three separate п bonds) (1)		
	ALLOW confers stability on the molecule / makes benzene more stable (than expected)		
	IGNORE Reference to carbon-carbon bond lengths Values of any enthalpy changes		
	Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	$\begin{array}{c} \overset{\text{CH}\longrightarrow\text{CH}_2}{\longrightarrow} + 4 \text{H}_2 \rightarrow \\ \end{array}$		3
	$(\Delta H =)$ — 328 (kJ mol ⁻¹)		
	First mark: For "4"		
	Second mark: Product as above / correct skeletal formula of product		
	ALLOW Side chain written as $-C_2H_5$		
	Third mark : -328 (kJ mol ⁻¹)		
	ΝΟΤΕ		
	One H ₂ added showing a CQ correct product with only side chain reduced and cq $\Delta H = -120$ (kJ mol ⁻¹) scores (2)		
	Three H ₂ added showing a CQ correct product with only the benzene ring reduced and cq $\Delta H = -208 \text{ (kJ mol}^{-1} \text{) scores}$ (2)		
	Five H ₂ added with fully correct product drawn and $\Delta H = -448$ (kJ mol ⁻¹) scores (2)		
	Three and a half H_2 added showing a fully correct product and $\Delta H = -268/-293(.3)(kJ mol^{-1})$ scores (2)		
	NOTE Mark scoring points independently		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	Mark awarded for displaying		1

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	Electrophilic substitution BOTH words needed IGNORE references to 'acylation'		1
	and /or 'Friedel-Crafts'		

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)(iii)	Friedel and Crafts		1
	BOTH names are needed for this mark		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iv)	First mark: $C_6H_5COCI + AICI_3 \rightarrow C_6H_5CO^+ + AICI_4^-$ (1)		4
	+ can be anywhere on the C_6H_5CO in the equation for the first mark		
	н н		
	$(AICI_4^- + H^+ \rightarrow HCI + AICI_3)$		
	NOTE: If ethanoyl chloride or any other acid chloride or the generic RCOCI is used instead of benzoyl chloride, no first mark can be awarded but the 2nd, 3rd and 4th marks can be awarded consequentially		
	Second mark : First curly arrow, as shown, to start from inside the hexagon to the correct C+ carbon (i.e. not to the benzene ring) Note the + must be on the C of the C=O/CO for this mark		
	(1) Third mark: Intermediate correctly drawn		
	(1) NOTE + ca be shown anywhere in the ring or at the C atom where electrophile is bonded. The 'horseshoe' in the intermediate to cover at least three carbon atoms		
	Fourth mark: Second curly arrow as shown from C— H bond to reform the ring, not from the H atom in this bond (1)		
	NOTE Products do not have to be shown nor the equation for regeneration of the catalyst given		

Question Number	Acceptable Answers	Reject	Mark
2(b)(v)	Absorbs / reflects / blocks / protects from / shields against / uv (light/ radiation) IGNORE 'non-toxic' / references to IR	adsorbs uv light	1

Question Number	Acceptable Answers		Reject	Mark
2 (c)(i)	Any TWO of the foll (1) for identifying th shown and (1) for w matching pair	ne bond by formula as		4
	UNITS are not requ	lired		
	Bond	Wavenu range/wavenumber (cm ⁻¹)		
	C=C	1600 / 1580 / 1500 / 1450		
		All four values needed		
	C=0	1700 – 1680		
	C-	3030		
	C-	750 / 700		
		Both values needed		
	within the correct ra	C		
	IGNORE nmr values / chemic	cal shifts		

Question Number	Acceptable Answers	Reject	Mark
2(c) (ii)	$\begin{array}{c} X \\ Y \\ z \\ Y \\ Y$		2
	First mark EITHER Identifies correctly the three different proton environments		
	ALLOW If the three different proton environments are only shown on one of the benzene rings		
	NOTE On right-hand ring, clockwise from C=O, positions 2, 3 and 4 And /or 2,4 and 5 are shown as different environments and /or On left-hand ring, anti-clockwise from C=O, positions 2, 3 and 4 And /or 2,4 and 5 are shown as different environments		
	OR		
	Identifies proton Z correctly on both benzene rings (1)		
	Second mark Fully correct labelling both rings using the letters X, Y and Z		
	NOTE X and Y labels are interchangeable, Z is not (1)		

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	(3 x -120) = -360 (kJ mol ⁻¹)	No sign or + sign in answer, ie 360/+360 Any other wrong units	1
	IGNORE ΔH , and case of letters in units e.g allow Kj	ΔΕ	

Question Number	Acceptable Answers	Reject	Mark
*3(a)(ii)	 (Bonding in) benzene/it is more stable (than Kekule) by 152 kJ mol⁻¹ (consequential on (a)(i)) (1) 		4
	 π /p/double bond electrons are delocalized (around the ring) 		
	OR six p electrons shared between six (ring) carbon atoms		
	OR delocalized because of overlap of p orbitals		
	OR resonance hybrid of C=C's and C-C's (1)	Attack by	
	Substitution reactions (rather than addition) (1)	electrophiles with no mention of	
	NOTE: Nucleophilic substitution negates the substitution mark because it is wrong additional information	substitution	
	 Maintains/regains delocalized system OR maintains/regains stability OR maintains/regains stabilization energy (1) 		

Question Number	Acceptable Answers		Reject	Mark
3 (b)(i)	Concentrated nitric acid/HNO ₃	(1)		2
	Concentrated sulfuric acid/H ₂ SO ₄	(1)	Concentrated hydrochloric	
	Allow conc or c. in place of 'concentra	ated	acid	
	ALLOW Concentrated nitric acid and sulfuric acid			
	OR			
	Concentrated HNO $_3$ and H $_2$ SO $_4$	(2)		
	Second mark depends on nitric acid			
	Max. (1) if no mention of concentrate	ed		
	Nitric acid and concentrated sulfuric a scores (1)	acid		
	NOTE: conc. HNO ₃ and H ₂ SO ₄ (aq) scores (1) conc. HNO ₃ and conc H ₂ SO ₄ (aq) score (2)			

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	Electrophile/electrophilic	Acid Base	1
	ALLOW Electrophyl(e)	Oxidizing agent Reducing agent	

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	$Br_2 + FeBr_3 \rightarrow FeBr_4^- + Br^+$ OR	lack of charges	4
	Br-Br + FeBr ₃ \rightarrow Br ^{δ+} Br ^{δ-} FeBr ₃ (1) IGNORE state symbols even if wrong		
	$H = Br$ $H = Br$ $(+ FeBr_3)$		
	$\rightarrow H^{+}/HBr (+ FeBr_{3})$		
	Arrow from benzene ring electrons (from inside the hexagon) to $\mathbf{Br}^+/\mathbf{Br}^{\delta_+}(\dots,\mathbf{Br}^{\delta}\mathrm{FeBr}_3)$ (1)		
	Correctly drawn intermediate with delocalization covering at least three carbon atoms, but not the carbon atom bonded to the bromine with the positive charge shown inside the hexagon		
	The bonds to H and Br may be dotted (1)		
	Arrow from or close to bond to H to centre of ring and H ⁺ /HBr as a product (1)		
	ALLOW Kekulé structure for benzene and intermediate		
	Each marking point is independent		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iv)	SO ₃ H OR C ₆ H ₅ SO ₃ H accept: displayed -SO ₃ H $-SO_3^{-}H^+$ $-SO_2OH$ If two formulae are given both must be correct (1)		2
	Penalise if bond clearly goes to O or H rather than S		
	Benzenesulfonic acid (1)	Benzenesulfuric acid/benzosulfonic	
	ALLOW phenyl sulfonic acid	acid/benzylsufonic acid	

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	Non-bonding/lone pair electrons from oxygen (1) are delocalized/incorporated/donated into the ring (electron system) (Could be shown in diagram) OR increases electron density on the ring (1)	from methyl/methoxy	3
	makes it (the ring) more susceptible to electrophilic attack/makes it (the ring) a better nucleophile (1)	Makes it more electronegative	

Question Number	Acceptable Answers	Reject	Mark
3(d)	(Chloromethyl)benzene/chloromethylbenzene/ chlorophenylmethane/ benzyl chloride OR dichloromethane(1)ALLOW phenylchloromethane		2
	Aluminium chloride (1)		
	ACCEPT formulae eg C ₇ H ₇ CI, C ₆ H ₅ CH ₂ CI, CH ₂ CI ₂ , AICI ₃	CH ₂ CI	
	ACCEPT other halogen carriers eg FeCl ₃ /iron(III) chloride/ZnCl ₂		
	ACCEPT bromine in place of chlorine for either/both marks		
	Correct formula and wrong name or correct name and wrong formula or any other wrong additional information loses mark		