Question Number	Acceptable Answers	Reject	Mark
1 (a)(i)	CH ₃ Cl / CH ₃ Br / CH ₃ I Ignore name and state symbols	Name alone	1
	Allow displayed formula		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	$CH_3CI + AICI_3 \rightarrow CH_3^+ + AICI_4^-$ Allow $CH_3^{\delta^+} AICI_4^{\delta^-}$ and other halogens	$CH_3^{\delta^+}$ -AlCl $_3^{\delta^-}$ + Cl ⁻	1
	Ignore state symbols and curly arrows		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iii)	H CH ₃ Ignore curly arrows and use of wedges/dashes Ignore attempts to complete mechanism if intermediate is correct Must show reasonable delocalisation over at least 3 carbon atoms Allow positive charge anywhere inside benzene ring Allow delocalization shown as dashed line e.g H CH3 Allow correct Kekulé structure	Complete circle of delocalization 'Upside down' delocalization e.g.	1

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	(Methyl group) donates/increases electron density to the ring/feeds electrons into ring Allow the methyl group is electron releasing	Donates lone pair of electrons Ring becomes more electronegative Just 'inductive effect'	1

Question Number	Acceptable Answers	Reject	Mark
1 (b)(ii)	(Methylbenzene) is more susceptible to electrophilic attack/attack by positive species/makes it a stronger nucleophile Ignore comments about ring stability Allow methyl group stabilizes carbocation		1

Question Number	Acceptable Answers	Reject	Mark
1 (c)(i)	$C_{6}H_{5}COCH_{3} / Allow displayed or skeletal formulae or Kekulé$		1

Question Number	Acceptable Answers	Reject	Mark
1 (c)(ii)	Any 2 from 4 Lower energy input (to heat reaction)/less heat losses/more efficient heating (1) Electrical energy can be obtained from renewable resources whereas gas is non renewable (1) Easier separation of catalyst/(easier to) re- use catalyst (1) Involves less chlorine/chlorine compounds (1) Ignore any comments regarding carbon dioxide level/global warming	Faster reaction because using a catalyst Just 'uses less fuel' Just uses less toxic/harmful chemicals	2
Question Number	Acceptable Answers	Reject	Mark
1 (d)	Fuming sulfuric acid / oleum / sulfur trioxide (dissolved) in concentrated sulfuric acid Allow fuming H ₂ SO ₄ /H ₂ S ₂ O ₇ / SO ₃ (dissolved) in concentrated H ₂ SO ₄	Just sulfuric acid or sulfur trioxide	1

Question Number	Acceptable Answers	Reject	Mark
Number 2(a)(i)	$\begin{array}{c} H_{2}SO_{4} + HNO_{3} \rightarrow NO_{2}^{+} + H_{2}O + HSO_{4}^{-} \\ OR \\ H_{2}SO_{4} + HNO_{3} \rightarrow H_{2}NO_{3}^{+} + HSO_{4}^{-} \\ H_{2}NO_{3}^{+} \rightarrow NO_{2}^{+} + H_{2}O \end{array}$ Both needed $\begin{array}{c} H_{2}OB_{1} + HOD_{2}^{+} + H_{2}O \\ Both needed \\ H_{2}OB_{1} + HOD_{2}^{+} + H_{2}O^{+} + H_{2}O^{+} + HOD_{2}^{-} \end{array}$ $\begin{array}{c} H_{2}SO_{4} + HNO_{3} \rightarrow H_{2}O_{2}^{+} + H_{2}O_{3}^{+} \\ H_{2}O_{3} + HNO_{3} \rightarrow H_{2}O_{3}^{+} + H_{2}O_{3}^{+} \end{array}$ $\begin{array}{c} H_{2}O_{3} + HOO_{3} \rightarrow H_{2}O_{3}^{+} + H_{2}O_{3}^{+} \\ H_{2}O_{3} + HOO_{3} \rightarrow H_{2}O_{3}^{+} + H_{2}O_{3}^{+} \end{array}$ $\begin{array}{c} H_{2}O_{3} + HOO_{3} \rightarrow H_{2}O_{3}^{+} + H_{2}O_{3}^{+} \\ H_{2}O_{3} \rightarrow H_{2}O_{3}^{+} + H_{2}O_{3}^{+} \end{array}$		4
	Ignore state symbols even if wrong $ \begin{array}{c} & (1) \\ & ($		
	 arrow showing attack on the nitronium ion with arrow going to N atom, or into the C - N gap (1) Arrow must start at or inside ring Ignore position of + charge structure of the intermediate showing reasonable delocalisation (over at least 3 carbon atoms) (1) arrow from the bond showing the loss of H⁺ from the intermediate. Removal by hydrogen sulphate ion preferable but not essential (1) Kekulé structures score full marks If the electrophile is incorrect then the intermediate structure mark is lost 	Delocalisation mustn't go over C where NO ₂ ⁺ is attached	

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii) QWC	First mark: (lone pair of) electrons on the oxygen atom or on the OH group is delocalised / incorporated into the ring (1) OR the OH group is electron donating (1) Second mark: so the ring in phenol is more negative / has increased electron density / ring is more nucleophilic / hence more susceptible to electrophilic attack (1) OR	Reject hydroxide for first mark only Nucleophilic attack on the ring	2
	the OH group activates the ring (1)	'Makes it more reactive' on its own	
	Second mark stand alone		

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	tin (1) and concentrated hydrochloric acid (1)	lithium aluminium hydride sodium borohydride	2
	Formulae acceptable.		
	If NaOH is added after HCl then ignore; if implication that HCI and NaOH are added together then second mark is lost		
	OR		
	iron (1) and concentrated hydrochloric acid (1) 2 nd mark conditional on a metal		
	OR		
	hydrogen (1) and platinum / palladium catalyst (1)	Nickel Raney Nickel	

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	ethanoyl chloride OR acetyl chloride OR CH3COCl OR equivalent displayed formula OR		1
	ethanoic anhydride OR acetic anhydride OR (CH3CO)2O OR equivalent displayed formula		
	Right name but wrong formula does not score		
	Ignore minor spelling errors if the formula is correct		

Question Number	Acceptable Answers	Reject	Mark
2(b) QWC	First mark: steam is passed into the mixture OR water is added and mixture boiled or distilled or heated (1)	Passed over; anything that implies external heating with a steam bath or water bath any implication of fractional distillation any suggestion that separation based on differing boiling temperature	3
	Second mark: and the 2-nitrophenol / product vapour distilled off with the water (and condensed) (1) Advantage: The 2-nitrophenol / product distils at a lower temperature / prevents decomposition(1) Stand alone	water-soluble	

Question Number	Acceptable Answers	Reject	Mark
2(c)	Read the whole answer to get the sense The (ring) hydrogen atoms are on carbon atoms which have one / a hydrogen on an adjacent carbon atom, so are doublets (1) All the other hydrogen atoms have no adjacent hydrogen (bearing carbon) atoms, so are singlets (1)	nearby	2

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	The delocalization of the (π) electrons of the ring make benzene more stable (than 1,3,5- cyclohexatriene) (1) IGNORE bonding in benzene is strong Substitution retains this (stable) arrangement OR Addition removes this (stable) arrangement (1)		2

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$H = C = C I \qquad \qquad C I \qquad \qquad H = C I \qquad \qquad I = C I = C I \qquad \qquad I = C I = C I \qquad \qquad I = C I = C I \qquad \qquad I = C I = C I \qquad \qquad I = C I = C I \qquad \qquad I = C I = C I \qquad \qquad I = C I = C I \qquad \qquad I = C I = C I \qquad I = C I = C I = C I \qquad I = C I \qquad \qquad I = C I = C I \qquad I = C I = $		4
	$\longrightarrow H \longrightarrow C \oplus + \begin{bmatrix} CI \\ CI \\CI \\CI \\CI \\CI \\CI \\CI \\CI \\CI \\$		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	← CHO + H [⊕]		
	Formation of electrophile (curly arrow, structural formulae not required). Positive charge may be anywhere on the electrophile ALLOW HCI + CO for HCOCI ALLOW Non-displayed electrophile (1)		
	Curly arrow from benzene ring to electrophile (1)		
	Wheland structure with gap opposite tetrahedral carbon (1)		
	Curly arrow from C–H bond into ring and formation of correct organic product OR		
	Kekulé structures (1)		
	IGNORE Use of AICI₄ ⁻ to pick off proton Proton product		
	First curly arrow may come from any part of the delocalisation circle Second curly arrow may come from any part of the C–H bond Positive charge on the Wheland structure may be in any part of the horseshoe	Positive charge on the tetrahedral carbon	

Question	Acceptable Answers		Reject	Mark
Number				
3(a)(iii)	In each step the second mark is dependent of first	on the		4
	Step 2 Potassium dichromate((VI)) / K ₂ Cr ₂ O ₇ / sodium dichromate((VI)) / Na ₂ Cr ₂ O ₇ ALLOW Potassium manganate ((VII)) / KMnO ₄ Sodium manganate ((VII)) / NaMnO ₄	(1)	Incorrect oxidation number	
	Stand alone mark			
	Sulfuric acid / H ₂ SO ₄ (ALLOW nitric acid) Ignore 'concentrated'	(1)	Hydrochloric acid	
	ALLOW Acidified potassium (/ sodium) dichromate((OR Acid and potassium (/ sodium) dichromate((
	$Cr_2O_7^{2-}$ and H ⁺ OR acidified dichromate((VI))	(1)		
	Step 3 Lithium tetrahydridoaluminate((III)) / LiAIH ₄ OR			
	Lithium aluminium hydride	(1)		
	Stand alone mark			
	(Dry) ether / ethoxyethane / (di)ethyl ether	(1)	Hydrogen and	
	Sodium borohydride / NaBH ₄ in ethanol, alka water scores 1/2	li or (1)	catalyst / Tin and HCI	

Question Number	Acceptable Answers	Reject	Mark
3(b)	Marking Point 1 Electron density of the ring increased (1)Stand alone markMarking Point 2 Due to donation of oxygen / OH group lone pair to the ring (1)Marking Point 3 and 4 		4