1. (a) The emf of a half-cell measured relative to the standard hydrogen electrode
all solutions at $1 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration and gases at 1 atm pressure / 101 kPa and at a stated temperature / 298K (1) Standalone mark
ALLOW pressure of 100 kPa
(b) Introducing another metal wire would set up its own p.d. / can only measure a potential difference / need source and sink for electrons / voltmeter requires two connections
(c) (i) $2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq})$ or multiples

OR
$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$
Species (1)
balancing (1)
Do not allow species mark if electrons still in equation, but allow
balancing mark if 4 e on both sides
(ii) $\Delta \mathrm{E}_{\text {react }}^{\Theta}=(+) 0.84(\mathrm{~V}) \quad$ (1)

Greater than zero therefore feasible (1)

QWC (iii) Zn oxidises preferentially to $\mathrm{Fe} / \mathrm{Zinc}$ acts as sacrificial (anode) (1) If Sn used (and damaged), Fe oxidises; preferentially (1) Disallow "oxidises more readily"
$\mathrm{E}^{\Theta} \mathrm{Zn}^{2+} / \mathrm{Zn}$ more negative than for Fe
OR
$\mathrm{E}^{\Theta} \mathrm{Zn} / \mathrm{Zn}^{2+}$ more positive than for Fe
OR
E^{θ} cell for Zn being oxidised by O_{2} is more positive than for Fe being oxidised by O_{2}
OR
similar E^{Θ} arguments related to preferential oxidation with Sn (1)
disallow "higher" or "bigger" for more negative or more positive
2. (a) $3 \mathrm{OCl}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$(1)
chlorine (in OCl^{-}) is (simultaneously) oxidised from +1 to +5
(1)
and reduced from +1 to -1 (1)
If only oxidation numbers given max 1 (out of 2)
If oxidation numbers omitted max 1 (out of 2)
(b) (i) blue / black to colourless
(ii) no. moles $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ used $=12.5 \times 0.1 / 1000=1.25 \times 10^{-3} \quad$ (1)
no. moles $\mathrm{I}_{2}=1.25 \times 10^{-3} / 2=6.25 \times 10^{-4}$
no. moles $\mathrm{ClO}^{-}=$no. moles 1_{2} (1)
no. moles ClO^{-}in original $10 \mathrm{~cm}^{3}=10 \times 6.25 \times 10^{-4}$

$$
=6.25 \times 10^{-3}
$$

no. moles ClO^{-}in $1 \mathrm{dm}^{3}=100 \times 6.25 \times 10^{-3} \mathbf{(1)}=0.625$
(iii) mass $\mathrm{Cl}_{2}=0.625 \times 71$
$=44.4$ (g)
mark consequentially on (ii)
must be 3s.f. in final answer
(c) Cl_{2} is the stronger oxidising agent because Cl_{2} oxidises S from
$(+) 2$ to (+)6 (1)
but l_{2} oxidises S from (+)2 to (+)2.50 (1)
QWC (d) O_{2} oxidises KI / iodide to l_{2}. or balanced equation (1)
ll_{2} reacts with starch / paper to give blue / black (1)
3. (a) $\mathrm{C}_{10} \mathrm{H}_{8}$
ALLOW $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}$
$\operatorname{NOT}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$
1
(b) (i) -600
NOT +600
NOT 600
1
(ii) Naphthalene is more/very stable than double bonds suggest (1)
Must be a comparison for the $1^{\text {st }}$ mark
Therefore the electrons/bonds may be/are delocalised (over the ring system)
$O R$ it is a delocalised system (1)
No TE from (i)
Delocalised mark can be given if delocalisation mentioned in (iii)
(iii) No
because it is likely to react like benzene / delocalised structure / no double bonds
$O R$ bromine not a strong enough electrophile without a catalyst
OR "yes but only if bromine [NOT bromine solution] and a catalyst"
(c) (i) Reagent

2-chloropropane (1)
ALLOW 1-chloropropane OR other halogenopropanes
NOT chloropropane
NOT bromo-2-propane
ALLOW formula with or without non-systematic name $A L L O W \mathrm{ClCH}\left(\mathrm{CH}_{3}\right)_{2}$ OR $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl} \quad O R \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HCl} \quad O R \quad \mathrm{ClC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{H}$

Catalyst
aluminium chloride / $\mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6}$
OR aluminium bromide / AlBr_{3}
$O R$ iron(III) chloride/ FeCl_{3} (1)
NOT $\mathrm{AlCl}_{4}{ }^{(-)}$
NOT "iron" on its own

If both correct but wrong way round $\mathbf{1}$ (out of 2)
2
(ii) electrophilic (1)
substitution (1)
Can be given in any order
Mark independently
2
4. (a) (i) EITHER
$\Delta \mathrm{E}^{\theta}=(+) 0.15(\mathrm{~V}) \mathrm{OR} \mathrm{E}^{\theta}\left(\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}\right)$ more positive or greater than E^{θ}
$\left(\mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right)$; accept reverse argument (1)
(so) MnO_{4}^{-}reacts with $\mathrm{Cl}^{-} \mathrm{OR} \mathrm{Cl}{ }^{-}$ions form Cl_{2} OR KMnO_{4} reacts with $\mathrm{HCl}(1)$
OR
$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{Cl}^{-} \rightarrow{ }^{-} 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cl}_{2}$
$\mathrm{E}^{\theta}=(+) 0.15(\mathrm{~V})(\mathbf{1})$
2
(ii) stated colour change of colourless to (pale) pink NOT purple OR
stays (pale) pink
OR pink to colourless
OR first excess of (coloured) manganate((VII))
IGNORE "self-indicating"
IGNORE references to Mn^{2+}
(b) (i) (Multiply iron half-equation by five to) cancel out electrons OR balance electrons
(ii) Moles $\mathrm{MnO}_{4}^{-}=\frac{0.0200 \times 20.10}{1000}$

$$
=0.000402 \mathrm{~mol} \mathrm{MnO}_{4}^{-}(\mathbf{1})
$$

Moles Fe^{2+} per $25.0 \mathrm{~cm}^{3} \quad=5 \times 0.000402$

$$
=0.00201 \mathrm{~mol} \mathrm{Fe}^{2+}(\mathbf{1})
$$

Moles Fe^{2+} per $200 \mathrm{~cm}^{3}=0.00201 \times \frac{200}{25} \mathrm{~mol} \mathrm{Fe}{ }^{2+}$

$$
=0.01608 \mathrm{~mol} \mathrm{Fe}^{2+}(\mathbf{1})
$$

Mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=0.01608 \times 278$

$$
=4.47 \mathrm{~g} \text { or via concentrations } \mathbf{(1)}
$$

Percentage purity $\quad=\frac{4.47}{6.00} \times 100 \%$
= 74.5\% (1) ALLOW 74.7\% / 75\%

Correct answer + working (5)
ALLOW 2 or more sig figs
If start by dividing $\frac{6.00}{278}$, and final answer is incorrect, candidate can access first three marks only.

If third step omitted, answer 9.3\% OR 9.33\% OR 9.4\%
(c) (i) $\quad \mathrm{E}^{\theta}=+1.46-(-0.13)=(+) \mathbf{1 . 5 9}(\mathrm{V})$

Correct answer alone (1)
PbSO_{4} precipitated (1)
(ii)
$\left[\mathrm{H}^{+}{ }_{\text {(aq) }}\right]$ not $1 \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
$\left[\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}\right]$ not $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ (1)
the conditions (in the car battery) are not standard (1)
"temperature non-standard" alone or "not 1 atm pressure" alone does not score
5. (a) (i) Add silver nitrate (solution) (1) ACCEPT correct formula (pale) yellow precipitate/solid(1)

OR
Add chlorine (solution)/bromine (solution) and hydrocarbon solvent (1) Solvent goes purple/pink/violet (1)
$2^{\text {nd }}$ mark is dependent on $1^{\text {st }}$ 2
(ii) Iodine /I and sulphur / S identified (1) -NOT $\mathrm{I}_{2} / \mathrm{I}^{-} /$iodide

Iodine

initial (+)5 final $-1 \quad$ (1)
Sulphur
initial (+)4 final (+)6 (1)
ACCEPT as roman numerals
ACCEPT +/- on either side/sub or superscript
ACCEPT as words
3
(iii) $1 \times-6=-6, \quad 3 \times+2=+6 \quad$ ALLOW TE from (ii)
$O R$ total change in oxidation number of +6 for $S,-6$ for I
ACCEPT justification in terms of electrons
(b) (i) pipette
ALLOW burette
NOT measuring cylinder
(ii) Starch (solution) (1)
blue/dark blue/blue-black/black to colourless (1)
ALLOW max 1 if candidate states "no indicator needed/self-indicating"
with colour change brown/yellow to colourless
If no indicator given but correct colour change $\mathbf{1}$ (out of 2)
(iii) $\frac{24.0}{1000} \times 2.4(0) \times 10^{-4} \quad$ OR $0.00024(\mathrm{~mol})$
The mark is for the answer
(iv) $\frac{2.40 \times 10^{-4}}{2}=1.2(0) \times 10^{-4}(\mathrm{~mol})$ OR $0.00012(\mathrm{~mol})$
ALLOW TE from (iii)
The mark is for the answer
(v) $1.2 \times 10^{-4} \times 100=0.012(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$
ALLOW TE from (iv)
The mark is for the answer 1
6. (i) (Buchner) flask / boiling tube connected to pump, glass tube through stopper into solution
eg

ACCEPT

But must be a test tube and tube to bottom as shown
(ii) $8 \mathrm{H}^{+} \quad 4 \mathrm{H}_{2} \mathrm{O}$

ACCEPT multiples
(iii) Number of moles of manganate(VII) ion
$=\frac{20 \times 0.020}{1000}=0.0004(0)(\mathbf{1})$
Number of moles of electrons
$=5 \times 0.00040=0.002(0)(\mathbf{1})$
Number of moles of vanadium ions
$=\frac{10 \times 0.10}{1000}=0.001(\mathbf{1})$
(as vanadium (V) is formed by loss of 2 moles of electrons)
Oxidation number of vanadium in aerated solution is +3 (1)
(iv) It is a powerful oxidising agent, $E^{\theta}=+1.51 \mathrm{~V}$

OR
It is self-indicating 1
7. (a) (i) uses E^{\ominus} values to find $E_{\text {reaction }}=(+) 1.57(\mathrm{~V})(\mathbf{1})$

Reject-1.57
$\mathrm{Zn}+2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (1)
Accept equation with equilibrium sign
Rejection equation with Zn on the right
(ii) $\quad E_{\text {reaction }}$ for the production of hydrogen is $(+) 0.76(\mathrm{~V})(\mathbf{1})$
smaller than reaction in (i) so is less likely (1)
OR
$\mathrm{NO}_{3}{ }^{-}$being the oxidised form of a redox couple with a more positive E^{\ominus} than $\mathrm{E}^{\ominus} \mathrm{H}^{+} / 1 / 2 \mathrm{H}_{2}$ (1)
is a stronger oxidising agent than $\mathrm{H}^{+}(\mathbf{1})$
(iii) hexaaquacopper(II) (1)

OR

Both marks stand alone
[IGNORE charge]
(1)
[IGNORE how $\mathrm{H}_{2} \mathrm{O}$ ligand is bonded to central cation]
Accept hexaquacopper(II)
Reject formula
(iv) ligand exchange/replacement/substitution (1)
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{CuCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O}$ (1)
OR
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightleftharpoons \mathrm{CuCl}_{4}{ }^{2-}+4 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O}$ (1)
ALLOW \rightarrow
Accept $\mathrm{H}_{2} \mathrm{CuCl}_{4}+2 \mathrm{H}^{+}$for $\mathrm{CuCl}_{4}^{2-}+4 \mathrm{H}^{+}$

(b) (i) $\quad E^{\ominus}$ for the reaction is $-0.39(\mathrm{~V})$ (so not feasible) [value is required] Accept Cu^{2+} being the oxidised form of the redox couple with the more negative E^{θ}, will not oxidise Γ

(ii) CuI is a solid (so conditions are not standard) (1)

Equilibrium is pulled over/moves to favour the r.h.s. (1)
Reject just 'conditions not standard'
(iii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$

OR $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$
Accept $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
Reject $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+}$
Reject any $2+$ complex
(iv) (atmospheric) oxygen (1)
oxidises Cu^{+}to Cu^{2+} (1)
Reject air for oxygen
(c) (i) starch (1)
blue-black/blue/black to colourless (1)
Reject clear for colourless
(ii) (If added too early) insoluble complex/black solid formed, making titre too low

OR (If added too early) insoluble complex/black solid formed, removes iodine from solution

OR (If added too early) insoluble complex/black solid formed, causes inaccurate titre.
OR (If added too early) insoluble complex/black solid formed, not all the iodine is titrated.
(iii) Amount thiosulphate $=0.01655 \mathrm{dm}^{3} \times 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
$=$ amount Cu^{2+} in $25.0 \mathrm{~cm}^{3}=1.655 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
amount of Cu^{2+} in $250 \mathrm{~cm}^{3}=1.655 \times 10^{-3} \times 10$ (1)
mass of Cu (in sample) $=1.655 \times 10^{-2} \times 63.5 \mathbf{(1)}=1.051 \mathrm{~g}$
$\% \mathrm{Cu}$ in brass $=1.051 \times 100 / 1.5=70 \%(\mathbf{1)}$
[IGNORE sf]
[mass of 1.051 g with working scores (4);
correct answer with no working scores (3).]
Mark consequentially
5
8. (a) $3 d^{10} 4 s^{1}$ and $3 d^{10}$

Accept $4 s^{1} 3 d^{10}$
(b) (i) QWC*
the (3)d sub-shell is full (1)
Accept orbitals (it must be plural) for sub-shell
Reject comments on partially filled sub-shell
so no d-d transitions are possible
OR no transitions in the right energy range are possible (1)
(and no light is absorbed)
Any mention of light emission loses $2^{\text {nd }}$ mark
(ii) combine the half-reactions to get $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$ (1)

IGNORE state symbols
and show that E^{\ominus} for this is $(+) 0.37(\mathrm{~V})$ (and as it is positive it is feasible) (1)
conditional on correct reaction
Reject just '> $0.3(V)$ '
(iii) activation energy (for the disproportionation) is high OR
Cu^{+}is kinetically stable
Reject activation energy for one of the half-equations is too high
(c) (i) divides each by atomic mass (1)
divides by smallest to obtain $\mathrm{Cu}_{2} \mathrm{SO}_{6} \mathrm{H}_{2}$ (1)
Division by atomic number scores zero
(ii) $\mathrm{CuSO}_{4} \cdot \mathrm{Cu}(\mathrm{OH})_{2}(\mathbf{2})$

If formula wrong but sulphate/ SO4 is present scores 1 (out of 2)
Accept $\mathrm{Cu}_{2} \mathrm{SO}_{4}(\mathrm{OH})_{2}$
Accept $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{SO}_{4}$
Accept $(\mathrm{CuOH})_{2} \mathrm{SO}_{4}$
Reject HSO_{4} instead of SO_{4}
(iii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \quad 1$

Accept $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
Reject $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(iv) ligand exchange / ligand substitution

1
(d) (i) QWC
(add aldehyde to 2,4-DNP) to obtain precipitate/ppt/solid/crystals (1) recrystallise derivative (1)
determine melting temperature of derivative (1)
compare with data tables (1) 4th mark conditional on melting temperature of a derivative being measured

Reject any identification method based on IR, NMR or mass for last 2 marks
(ii) the aldehyde is distilled off as it is formed

Reject any mention of reflux
Reject just 'the aldehyde is distilled off'
(iii) propanoic acid OR CH3 $\mathrm{CH}_{2} \mathrm{COOH}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(iv) No (extra) oxygen present

OR catalyst specific to formation of aldehyde / only lowers E_{a} of first oxidation
OR presence of hydrogen gives reducing conditions
OR copper is not an oxidising agent
OR aldehydes rapidly leave catalyst surface
(v) (At high pressure) all active sites are occupied/full

OR
(At higher pressures) rate controlled by availability of sites.
Accept reverse argument for low pressure
9. (a) (i) $\mathrm{Cr}:[\mathrm{Ar}] 3 d^{5} 4 s^{1}$
$\mathrm{Cu}:[\mathrm{Ar}] 3 d^{10} 4 s^{1}$
Both needed for the mark
Accept $4 s^{1} 3 d^{5}$
Accept $4 s^{1} 3 d^{10}$
Accept [Ar] written in full
(ii) all the others are $4 \mathrm{~s}^{2} /$ have full 4 s orbital (1)

Accept Cr and Cu/they do not have a full 4s orbital
Reject just 'only have one electron in $4 s$ '
OR
Have incomplete 4s orbital
The d subshell is more stable when either half or fully filled OR
A specific example of chromium having half-filled or copper having filled d sub-shell/set of d orbitals which is more stable (1)

Accept sub-energy levels d shell
Reject half-filled or filled d orbital(s)
(b) (i) Octahedral drawn must be 3-D IGNORE any or no charge

1
Accept $-\mathrm{H}_{2} \mathrm{O}$ (bond to H) except on water molecules on left of Cr
(ii) Dative bond formed from electron pair/lone pair on oxygen (of the water molecule) to the ion
This could be shown on a diagram
Accept a clear description of the dative bond
Reject 'dative' alone or from water
Reject just "dative bond formed from oxygen"
(iii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$

OR
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}+2 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{H}_{2} \mathrm{O}$
First mark is for the correct Cr product
Second mark is conditional on the first and is for the rest of the equation correct and balanced
(iv) Forms a green precipitate (1)

IGNORE initial colour of solution
(which reacts or dissolves or changes to)
a green solution (with excess reagent) (1)
Accept any shade of green
$2^{\text {nd }}$ mark is conditional on an initial ppt
(v) acid / acidic

Accept amphoteric/able to be deprotonated
Reject coloured ions/ligand exchange/ deprotonation /partially filled d orbitals
(c) (i) Check working - correct answer can be obtained by not dividing by 2 for $2^{\text {nd }}$ mark and not multiplying by 2 for $4^{\text {th }}$ mark
amount thiosulphate in titre $=0.0372 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}$
$=3.72 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
amount $\mathrm{I}_{2}=\frac{3.72 \times 10^{-3}}{2}(\mathbf{1})=1.86 \times 10^{-3} \mathrm{~mol}$
$2^{\text {nd }}$ mark cq on amount thiosulphate
amount dichromate in $25 \mathrm{~cm}^{3}$
$=\frac{1.86 \times 10^{3}}{3}(\mathbf{1})=6.2 \times 10^{-4} \mathrm{~mol}$
$3^{\text {rd }}$ mark cq on amount I_{2}
Total mass $\mathrm{Cr}=6.2 \times 10^{-4} \mathrm{~mol} \times 2 \times 10 \times 52 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1})$
$=0.645 \mathrm{~g}$
$4^{\text {th }}$ mark cq on amount dichromate
\% of $\mathrm{Cr}=64.5$ \% (1)
IGNORE SF unless rounded to 1 SF cq on mass Cr , provided less than 1 g
Accept 64.48 \%

OR
amount thiosulphate for whole sample
$=0.0372 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3} \times 10$
$=3.72 \times 10^{-2} \mathrm{~mol}(\mathbf{1})$
amount $\mathrm{I}_{2}=1.86 \times 10^{-2} \mathrm{~mol}(\mathbf{1})$
amount dichromate $=6.2 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
mass $\mathrm{Cr}=6.2 \times 10^{-3} \mathrm{~mol} \times 2 \times 52 \mathrm{~g} \mathrm{~mol}^{-1} \mathbf{(1)}$
$=0.645 \mathrm{~g}$
\% of $\mathrm{Cr}=64.5 \%$ (1)
IGNORE SF unless rounded to 1 sf Mark consequentially, as above
Note:
Correct answer with no working (3)
(ii) Colour at the end point would be green which
would prevent the loss of iodine colour being seen
OR
colour change at end point would be disguised by the colour of Cr^{3+}
Accept chromium instead of Cr^{3+}
Reject end point disguised by colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} /$ orange
10. (a) MnO_{4}^{-}needs acid to be reduced to Mn^{2+}
(b) 5
(c) (i) 1.79×10^{-4}
(ii) $1.79 \times 10^{-4} \mathrm{mols}$ of Fe^{2+} in one tablet
\therefore mols of $\mathrm{MnO}_{4}^{-}=\frac{1}{5} \times 1.79 \times 10^{-4} \mathbf{(1)}$
0.01 mol in $1000 \mathrm{~cm}^{3}$
$\therefore \frac{1}{5} \times 1.79 \times 10^{-4}$ in $\frac{1000}{0.01} \times \frac{1.79 \times 10^{-4}}{5}$
$=3.58$
$=3.6 \mathrm{~cm}^{3} \mathbf{(1)}$
(iii) No, titration value too low

Either: use more tablets
Or: use more dilute solution of KMnO_{4}
(d) QWC
(It is acceptable because) well below the maximum safe limit (1)
Not significantly different from recommended daily dose OR Variation in body mass means that different doses are acceptable OR only if max 1 tablet per day is written on the bottle (1)

