Question	Acceptable Answers	Reject	Mark
Number			
1 (a)	Alcohol; (2)-methylpropan-2-ol (1)	Formula of alcohol	2
	Catalyst: sulfuric acid OR any named strong acid Ignore concentration of acid (1) Accept formula for acid	Just acid/H ⁺ for catalyst	

Question	Acceptable Answers	Reject	Mark
Number			
1	Tap funnel / separating funnel	Buchner funnel	1
(b)(i)		Filter funnel	

Question Number	Acceptable Answers	Reject	Mark
1 (b)(ii)	To neutralize / remove/ react with (excess) acid	To purify it	1
	Allow To neutralize / remove / react with (excess) H ⁺ To remove acidic impurities To remove ethanoic acid To remove the acid (used as a) catalyst Ignore additional comments on quenching or reaction stopping	To remove excess acid and alcohol Just "to quench acid catalyst/stop reaction"	

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iii)	Add (anhydrous) calcium chloride/ sodium sulfate/ magnesium sulfate/ Allow silica gel Allow formulae of drying agents	Conc. sulfuric acid Anhydrous copper sulphate Just "silica"	1

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iv)	Round bottomed or pear-shaped flask + still head with stopper or thermometer + heat source (1) This mark cannot be given if apparatus is completely sealed /large gaps between components Downwards sloping condenser (with correct water flow) + collection vessel (1) Thermometer in correct position with bulb opposite condenser opening (1) Ignore fractionating column if included between flask and condenser	Conical flask Flat bottomed flask	3

Question Number	Acceptable Answers	Reject	Mark
*1 (c)	First mark (Two signals so) two hydrogen environments (1) This mark may be gained by a description of the only two environments, but reference to hydrogen must be made.	Just "the peaks are due to (CH ₃) ₃ and CH ₃	4
	Second mark (Numbers of hydrogen in each environment are/ are predicted to be) in ratio 3:9 or 1:3		
	OR		
	Peak due to $(CH_3)_3$ is $3x$ higher than peak due to CH_3 (1)		
	Third mark Environments are CH ₃ COO and (CH ₃) ₃ (H may have been specified in first marking point) These may be shown on a diagram of the formula of the molecule		
	OR		
	H-C-C=O (peak at 2.1) and H-C-C (peak at 1.3) (1)		
	Fourth mark Singlets/ no splitting as no H on adjacent C		
	OR		
	Singlets as the hydrogen environments are not adjacent to other H environments Allow "only one peak" for no splitting (1)		

Question Number	Acceptable Answers	Reject	Mark
1 (d)(i)	CH ₃ COOCH ₂ CH(CH ₃) ₂ Or correctly displayed		1
	Allow CH ₃ COOCH ₂ CH(CH ₃) CH ₃		

Question	Acceptable Answers	Reject	Mark
Number			
1	The H on the CH₃COO		1
(d)(ii)			
	Accept circle round all of first methyl group	Circle round C of	
	Accept a hydrogen in this environment if rest	first methyl group	
	of molecule is incorrect		

Question Number	Acceptable Answers	Reject	Mark
1 (e)(i)	Any acid with 6C (5C + COOH) which is chiral, so will have a branched chain		5
	C ₃ H ₇ CH(CH ₃) COOH		
	OR C ₂ H ₅ CH(CH ₃) CH ₂ COOH		
	OR (CH ₃) ₂ CHCH(CH ₃) COOH (1)	Infrared indicates O-	
	Infrared indicates (O-H present in a) carboxylic acid (1)	Infrared indicates alkyl group	
	High boiling temperature due to hydrogen bonding (between atoms in OH groups so not an ester.) Hydrogen bonds must be possible for structure shown		
	Allow acids can form dimers. Allow TE from formula of straight chain molecule with explanation that London forces are higher in a linear molecule (1)		
	(Optically active so) contains chiral C/ C bonded to four different groups The formula suggested must contain a chiral carbon to score this mark		
	This may be shown by a chiral carbon being labelled in the formula (1)	Just "does not	
	Carbonyl compound/ Carbonyl group/ Aldehyde and ketone absent (as no reaction with 2,4-dinitrophenylhydrazine)/ Allow carboxylic acids do not react with 2,4-dinitrophenylhydrazine/ (1)	contain C=O (group)"	

Question Number	Acceptable Answers	Reject	Mark
1 (e)(ii)	No because the isomers (which are carboxylic acids) contain same bonds / groups (C=O, C-O, C-H etc) (1)		1
	OR Yes because could be distinguished by	Yes because	
	infrared fingerprint (1)	spectrum is unique	

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	(Acid) hydrolysis	substitution	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	K ₂ Cr ₂ O ₇ / Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻ Potassium dichromate((VI)) / sodium dichromate((VI)) / dichromate((VI)) ions ALLOW manganate((VII)) ions, etc	Just "dichromate" chromates Correct formula with wrong name and vice versa Incorrect oxidation number	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iii)	Lithium tetrahydridoaluminate/ lithium aluminium hydride/ LiAIH4 (in dry ether)	Just [H ⁻]	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iv)	Methyl butanoate (1) CH ₃ CH ₂ CH ₂ COOH + CH ₃ OH → CH ₃ CH ₂ CH ₂ COOCH ₃ + H ₂ O (1)	Methyl butoate	2
	ALLOW IGNORE state symbols even if wrong		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(v)	CH ₃ -CH ₂ -CH ₂ -C Cl Don't penalise undisplayed methyl groups as here. COCI must be displayed as above.	C ₃ H ₇ for CH ₃ CH ₂ CH ₂	1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	Nitrogen inert / unreactive / less reactive (than oxygen) OR Oxygen might react with chemicals going through column / sample might oxidise		1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Solubility (in liquid / stationary phase) OR	Size of molecule / molar mass	1
	Interaction with liquid / stationary phase OR	Polarity, unless with explanation	
	Interaction between mobile and stationary phase	Boiling point / volatility	
	OR	Viscosity	
	Attraction for liquid / stationary phase OR	Attraction for carrier gas	
	Strength of (named) intermolecular forces OR	Just a named intermolecular force	
	Adsorption on liquid / stationary phase OR	Just 'retention time'	
	Absorption on liquid / stationary phase	Density	

Question Number	Acceptable Answers	Reject	Mark
	Acceptable Answers $ \begin{pmatrix} H & O & H & O \\ -C & -CH_2 & -C & -O & -C & -CH_2 & -C & -C \\ -CH_3 & CH_3 \end{pmatrix} $ OR $ \begin{pmatrix} H & O & H & O \\ -C & -CH_2 & -C & -O & -C & -CH_2 & -C & -O \\ -CH_3 & CH_3 \end{pmatrix} $ Ester link including C=O (1) Rest of polymer with oxygens at end correct (1) All H atoms must be shown. $ PENALISE \text{ lack of displayed C=O once only} $	Reject	Mark 2
	ACCEPT Without brackets around formula but bonds at end should be shown More than two correct units IGNORE n after brackets		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	Hydrolysis		1
	OR		
	Splits / breaks ester link	Just 'breaks	
	OR	polymer down'	
	polymer breaks down to monomers		
	OR		
	equation showing hydrolysis		

Question	Acceptable Answers	Reject	Mark
Number			
3(a)(i)	Sodium/potassium dichromate((VI))/potassium manganate ((VII))/Na ₂ Cr ₂ O ₇ /K ₂ Cr ₂ O ₇ /KMnO ₄	Just Cr ₂ O ₇ ²⁻ /MnO ₄ -	1
	IGNORE references to acid		

Question Number	Acceptable Answers		Reject	Mark
3(a)(ii)	(Heat under) reflux	(1)		2
	Use excess/sufficient oxidizing agent/reagent named in (a)(i), even if incorrect IGNORE references to (excess) acid	(1)		
	Stand alone marks			

Question Number	Acceptable Answers	Reject	Mark
3(a)(iii)	CH3CH2CN/C2H5CN (1)	Hydroxynitriles	3
	ACCEPT displayed or skeletal formulae		
	$CH_3CH_2CN + H^+ + 2H_2O \rightarrow CH_3CH_2COOH + NH_4^+$		
	OR		
	$CH_3CH_2CN + HCI + 2H_2O \rightarrow CH_3CH_2COOH + NH_4CI$ (2)		
	If equation is incorrect then presence of H ⁺ or acid in equation/or above arrow and water on LHS scores (1) Mark cq on formula of nitrile		
	ALLOW one mark for the following equation without H^+ . $CH_3CH_2CN + 2H_2O \rightarrow CH_3CH_2COOH + NH_3$		
	ALLOW two marks for either of the following with H^+ above the arrow $CH_3CH_2CN + 2H_2O \rightarrow CH_3CH_2COOH + NH_3$ $CH_3CH_2CN + 2H_2O \rightarrow CH_3CH_2COOH + NH_4^+$		
	ALLOW answers for alkaline hydrolysis followed by acidification $CH_3CH_2CN + OH^- + H_2O \rightarrow CH_3CH_2COO^- + NH_3$ (1)		
	Then $CH_3CH_2COO^- + H^+ \rightarrow CH_3CH_2COOH$ (1)		
	If propanamide, $CH_3CH_2CONH_2$ is given initially then ALLOW the two equation marks for the hydrolysis $CH_3CH_2\ CONH_2\ +\ H^+\ +\ H_2O\ \to\ CH_3CH_2COOH\ +\ NH_4^+$		
	If no acid is used then only one mark CH_3CH_2 $CONH_2$ + H_2O \rightarrow CH_3CH_2COOH + NH_3		

Question Number	Acceptable Answers		Reject	Mark
3(b)	Reagent - Propanoyl chloride/CH ₃ CH ₂ COCl	(1)	Propyl chloride	3
	Any two from:			
	C-Cl bond is weaker (than C- 0)	(1)		
	Cl ⁻ /chloride (ion) is a better leaving group	(1)		
	Carbonyl carbon is more positive/more $\delta + / more$ attractive to nucleophiles	(1)	Just Cl is more electronegative	
	OR			
	Reagent - Propanoic anhydride/(CH ₃ CH ₂ CO) ₂ O	(1)		
	CH₃COO [–] /propanoate (ion) is a better leaving g	roup (1)		
	Carbonyl carbon is more positive/more $\delta + / more \ attractive$ to nucleophiles	(1)		
	IGNORE references to eversible/equilibrium/ catalysts IGNORE bond polarity			

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	Radio waves/radio frequency	Just radio	1

Question Number	Acceptable Answers		Reject	Mark
3(c)(ii)	Any two from: Protons/nuclei/they have a property called spin/ have a magnetic moment/ have a magnetic field/ are aligned with the external magnetic field	(1)	starts to spin just dipole moment	2
	which flips/changes align against the external magnetic field (when radiation is absorbed)	(1) (1)	polarity flips any reference to electrons or molecules scores zero	

Question Number	Acceptable Answers		Reject	Mark
3(c)(iii)	Quartet ALLOW quadruplet/indication of four (peaks)	(1)		2
	Value from 0.1 to 1.9 (ppm) inclusive ACCEPT any range within the above range	(1)		