
1 The following molecules are structural isomers with molecular formula $C_5H_{10}O$.

(a) Which of the molecules would exhibit optical isomerism?

(1)

- \square A W
- B X
- \boxtimes **D** Z
- (b) Which of the molecules would exhibit geometric isomerism?

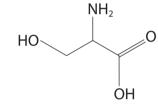
(1)

- \square A W
- B X
- X C Y
- \bowtie **D** Z
- (c) Which of the molecules would produce iodoform when reacting with iodine in alkaline solution?

(1)

- A Wonly
- **B** W and X
- ☑ C W and Y
- \square **D** W and Z

(d)		Which of the molecules would be oxidized to a carboxylic acid using acidified sodium dichromate(VI)?			
		X only Z only	(1)		
X	C	X and Y			
X	D	X, Y and Z			
(e) Which of the molecules would form a crystalline product with 2,4-dinitrophenylhydrazine?					
X	A	W only	(1)		
X	В	W and X			
X	C	W, X and Z			
X	D	X only			
		(Total for Question = 5 mark	s)		


- **2** Which of the following compounds is **not** chiral?
 - X A

⊠ B

X

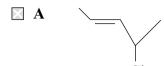
⊠ D

HOOOH

(Total for Question = 1 mark)

- **3** When one optically active isomer of 3-chloro-3-methylhexane reacts with hydroxide ions to form 3-methylhexan-3-ol, a racemic mixture forms because
 - ☑ A 3-chloro-3-methylhexane forms a carbocation intermediate.
 - **B** the reaction is a nucleophilic substitution.
 - ☑ C 3-chloro-3-methylhexane forms a five-bonded transition state.
 - ☑ D 3-methylhexan-3-ol contains a chiral carbon.

(Total for Question = 1 mark)


- **4** Select the word that best describes the effect of a chiral molecule on the plane of plane-polarized light. The plane of polarization of light is
 - **A** reflected.
 - **B** refracted.
 - **C** resolved.
 - **D** rotated.

(Total for Question = 1 mark)

- **5** Which of the following amino acids is optically active and produces an approximately neutral solution when dissolved in water?
 - ☑ A H,NCH,COOH

(Total for Question = 1 mark)

6 Which of the following compounds is a Z isomer and contains a chiral carbon atom?

- □ C
- ☑ **D** Cl

(Total for Question 1 mark)

- 7 Which of these compounds, whose formulae are shown below, **cannot** exist as a racemic mixture?
 - A CH₂ClCHClCOOH
 - \square **B** HOOCCHClCOOH
 - ☑ C CH₃CHClCOOH
 - **□ D** CH₃CH(OH)COOH

(Total for Question 1 mark)

8 Which of the following compounds has both optical and *E-Z* isomers?

- ☑ A CH₃CH=CHCH₂CH₃
- \square **B** CH₃CHClCH=C(CH₃)₂
- ☑ C CH₃CCl=CClCH₃
- **□ D** CH₃CHBrCH=CHCl

(Total for Question = 1 mark)

9 A white organic compound, \mathbf{X} , is optically active and reacts with ninhydrin to give a coloured product. The structural formula of \mathbf{X} could be

 \mathbf{X} A

 \mathbb{Z} B

$$C_{\text{CH}_3}$$

 \boxtimes C

 \mathbf{Z} **D**

(Total for Question = 1 mark)

10	Ketones react with hydrogen cyanide, HCN, in the presence of cyanide ions, CN ⁻ .					
	(a) Which of these ketones does not form a racemic mixture in this reaction?					
	\boxtimes A	CH ₃ CH ₂ CH ₂ COCH ₃				
	⊠ B	CH ₃ CH ₂ COCH ₂ CH ₃				
	区 C	CH ₃ CH ₂ CH ₂ COCH ₃				
	⊠ D	CH ₃ CH ₂ CH ₂ COCH ₂ CH ₃				
	(b) Thi	nis type of reaction is classified as	(1)			
	\boxtimes A	nucleophilic substitution.				
	⋈ B	nucleophilic addition.				
		electrophilic addition.				
	⊠ D	electrophilic substitution.				
		(Total for Question 2 ma	arks)			

11	Which	of the following has both optical and E-Z isomers?				
	$\boxtimes A$	CICH ₂ CHCICH CH ₂				
	⊠ B	CH ₂ CClCH ₂ CH ₂ Cl				
	区 C	ClCH ₂ CH CHCH ₂ Cl				
	■ D	CHCl CHCHClCH ₃				
12	(Total for Question 1 mar 12 One optically active isomer of 2-chlorobutane reacts with hydroxide ions to form butan-2-ol.					
		$C_2H_5CHClCH_3 + OH \rightarrow C_2H_5CH(OH)CH_3 + Cl$				
	The org	anic product is a mixture of enantiomers because				
	\square A	butan-2-ol contains a chiral carbon atom.				
	⊠ B	the reaction is a nucleophilic substitution.				
	⊠ C	2-chlorobutane forms a carbocation intermediate.				
	⋈ D	2-chlorobutane forms a five-bonded transition state.				
		(Total for Question 1 mark)				
13	Which of these four amino acids could not rotate the plane of plane-polarised light?					
	$\boxtimes \mathbf{A}$	H ₂ NCH(CH ₃)COOH				
	⊠ B	H ₂ NCH(CH ₂ COOH)COOH				
		H ₂ NCH ₂ COOH				
	⊠ D	H ₂ NCH(CH ₂ SH)COOH				
		(Total for Question 1 mark)				