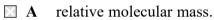
- 1 Chromatography is used to separate the components of a mixture and can be carried out in a range of different ways.
 - (a) A suitable example of a 'carrier gas' in gas chromatography is
 - 🖾 A chlorine.
 - **B** nitrogen.
 - C steam.
 - **D** not possible to state, as there should be a vacuum.
 - (b) Separation is achieved in gas chromatography due to the components in the mixture having different
 - A interactions with the stationary phase.
 - **B** interactions with the mobile phase.
 - \Box **C** colours.
 - **D** solubility in the moving solvent.

(1)

(1)

- 2 Which gas is the **least** suitable as a carrier gas in Gas-Liquid Chromatography?
 - 🖾 **A** Argon
 - **B** Carbon dioxide
 - C Oxygen
 - D Nitrogen

- **3** Chromatography may be used to separate mixtures of amino acids. This is best explained by the fact that different amino acids have different interactions with
 - **A** the mobile phase only.
 - **B** the stationary phase only.
 - C the mobile phase **and** the stationary phase.
 - **D** ninhydrin.


- **4** Ninhydrin is used in thin-layer chromatography to help with the identification of amino acids. This is because the ninhydrin
 - A reacts with amino acids to form a compound which has an intense colour.
 - **B** reacts with amino acids to form compounds each of which has a characteristic colour.
 - **C** increases the separation of the amino acids on the chromatogram.
 - **D** ensures that the mobile phase maintains a nearly constant pH for all the amino acids.

(Total for Question = 1 mark)

- **5** In one type of high-performance liquid chromatography (HPLC), the stationary phase is non-polar and a polar solvent is used as the eluent. Which of the following would travel through the chromatography column most quickly?
 - A Tetrachloromethane
 - **B** Chloromethane
 - C lodomethane
 - **D** Hexane

- 6 HPLC stands for
 - A high pressure liquid column.
 - **B** high performance liquid chromatography.
 - C heterogeneous phase liquid chromatography.
 - **D** homogenous phase liquid column.

7 In gas chromatography, mixtures are passed through a long tube containing a liquid as the stationary phase. The mixtures are separated into their components because the components differ in

- **B** melting temperature.
- \Box C volatility.
- **D** force of attraction to the liquid.

(Total for Question = 1 mark)

- **8** The distance on a chromatogram moved by an individual amino acid, in a mixture of different amino acids, mainly depends on
 - \square A the molar mass of the amino acid.
 - \square **B** the molar mass of the solvent used.
 - \square C the intermolecular forces between the solvent and the stationary phase.
 - **D** the intermolecular forces between the amino acid and both the solvent and the stationary phase.

- **9** The spectra of the compounds with the formulae $CH_3CH(OH)CH_3$ and $CH_3CH_2CH_2OH$ can be distinguished by
 - \square A the value of *m/e* of the molecular ion in the mass spectrum.
 - \blacksquare B the presence of a fragment with m/e = 15 in the mass spectrum.
 - C the presence of an absorption peak due to O–H in the infrared spectrum.
 - **D** the number of peaks in the nmr spectrum.

10 Which of the following has two singlet peaks in its nmr spectrum?

- A Methanal, HCHO
- \square **B** Methanol, CH₃OH
- \Box C Chloromethane, CH₃Cl
- \square **D** Dichloromethane, CH₂Cl₂

(Total for Question = 1 mark)

- CH₃ 11 The nmr spectrum of 2,2-dimethylpropane, H₃C—C—CH₃, contains |CH₃
 - \square A one singlet peak.
 - \square **B** four singlet peaks.
 - \square C one quartet peak.
 - \square **D** four quartet peaks.

12 In high performance liquid chromatography, HPLC, which of these factors does **not** affect the time taken for a component to pass through the column?

- **B** Material of stationary phase
- C Particle size of stationary phase
- \square **D** Temperature of column

(Total for Question = 1 mark)

- 13 How many different peaks due to hydrogen atoms would you expect to see in a low resolution proton nmr spectrum of propanoic acid, CH₃CH₂COOH?
 - 🛛 A 🛛 Two
 - **B** Three
 - \square C Five
 - **D** Six

(Total for Question = 1 mark)

- 14 In a high resolution proton nmr spectrum of ethanoic acid, CH₃COOH, the peak due to the hydrogen atoms in the methyl group would be a
 - \square A singlet.
 - \square **B** doublet.
 - \Box C triplet.
 - **D** quartet.

- **15** When propanone reacts with iodine in the presence of sodium hydroxide, the crystalline solid product has the formula
 - $\square A CH_3I$
 - \square **B** CHI₃
 - \Box C CH₃COCH₂I
 - \square **D** CH₃COCI₃