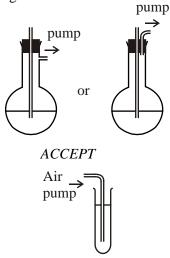
1.	(a)		$s^{2} 2p^{6} 3s^{2} 3p^{6} 3d^{6} 4s^{2}/4s^{2} 3d^{6} OR 3d^{8} (4s^{0})$ (1) nplete d shell (in the ion) (1)	2	
	(b)	(i)	Ni(CO) ₄	1	
		(ii)	0	1	
	(c)	(i)	$Ni(H_2O)_6^{2+}(aq) + NH_3(aq) \rightarrow Ni(H_2O)_5(NH_3)^{2+}(aq) + H_2O(I)$	1	
	QWO	C* (ii)	Δ S is likely to be small / close to zero (1) – <i>No TE</i> Same number of moles/molecules/particles in the same states on both sides of the equation (1)	2	
	(d)	(i)	$Ag^+(aq) + Cl^-(aq) \rightarrow Ag^{(+)}Cl^{(-)}(s)$	1	
		(ii)	1 mole of AgCl has a mass of $143.5/(108+35.5)$ (1) <i>OR</i> 143.3 from Data Book (or 143.4) Number of moles of AgCl = $6.133/143.5 = 0.0427(4) \ 0.04280$ (1) Number of moles of complex = $0.04274/2 = 0.02137$ Therefore mass of 1 mole = $5.000/0.02137 = 234/234.4$ (1) <i>3SF sufficient but not 2SF</i>	3	
		(iii)	$59 + 18 \times x + 17 \times (6 - x) + 71 = 234$ 232 + x = 234 x = 2 ([Ni(H ₂ O) ₂ (NH ₃) ₄]Cl ₂) Formula NOT needed for mark	1	
		(iv)	The two water molecules could be at 180° or 90° to one another		
			$\begin{bmatrix} H_2O \\ H_3N \\ H_3N \\ H_2O \\ H_2O \\ H_2O \end{bmatrix}^{2+} \begin{bmatrix} H_2O \\ H_3N \\ H_3 \\ H_3 \\ H_3N \\ H_3 \\ H$		
			ALLOW the word octahedral to explain diagram's shape	2	[14]
2.	(a)	(i)	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{1}3d^{5}$ <i>OR</i> $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{5}4s^{1}$	1	
	QWC	C*(ii)	V and Mn have two 4s electrons / filled 4s (orbital) Cr has one (1)		
			due to stability of half-filled shell/4s and 3d levels have similar energies (1)	2	

QWC*(b) $Cr^{3+}(aq), Cr^{2+}(aq)(IPt) - 0.41(V)$ (1) $[O_2(g) + 2H_2O(l)], 4OH^-(aq)(IPt) + 0.4(0) (V) (1)$ ALLOW a state symbol omission in each. ALLOW half equations Can be given in a cell diagram by application of the anti-clockwise rule oxygen will oxidise Cr^{2+} OR E^0 cell = (+) 0.81(V) and this is greater than (+) 0.6 (V) OR Cr^{2+} has more negative electrode potential so will reduce oxygen / oxygen more positive etc. (1) 3 QWC*(c) Water acts as a ligand by a non-bonding pair (of electrons on (i) the oxygen atom) (1) Making a dative (covalent)/co-ordinate bond (to the chromium ion) (1) 2 (ii) Bidentate/chelate/bridging 1 QWC*(iii) Two peaks in the NMR spectrum (1) Due to two different environments of hydrogen atoms / H in H_2O and H in CH_3 (1) Mark independently 2 QWC*(iv) Any two: C-H just below 3000 / 2962-2853 / 1485-1365 O-H 3200-3800 C=O 1700-1750 C-O 1230 - 1250 ALLOW values or ranges within these ranges If more than two given, -1 for each incorrect 2 (d) $3C_{2}H_{6}O$ to $3C_{2}H_{4}O$ provided 1 Na₂Cr₂O₇ (1) (i) 4H₂SO₄ and 7H₂O (1) ACCEPT multiples 2 (ii) Orange to green ALLOW qualified green e.g. blue-green 1 NOT green to orange (Sodium dichromate(VI)) is a carcinogen / toxic / irritant (iii) In any combination Lose mark for anything else with these. 1 [17]

3.	(a)	(i)	Add silver nitrate (solution) (1) ACCEPT correct formula	
	(4)	(-)	(pale) yellow precipitate /solid(1)	
			OR (A)	
			Add chlorine (solution)/bromine (solution) and hydrocarbon solvent (1) Solvent goes purple/pink/violet (1)	
			2^{nd} mark is dependent on 1^{st}	2
		(ii)	Iodine /I and sulphur / S identified (1) -NOT I2 /I-/iodide	
			Iodine initial (+)5 final –1 (1)	
			Sulphur	
			initial (+)4 final (+)6 (1) ACCEPT as roman numerals	
			ACCEPT +/- on either side/sub or superscript	
			ACCEPT as words	3
		(iii)	$1 \times -6 = -6$, $3 \times +2 = +6$ <i>ALLOW TE from (ii)</i>	
			OR total change in oxidation number of +6 for S, –6 for I	
			ACCEPT justification in terms of electrons	1
	(b)	(i)	pipette	
			ALLOW burette NOT measuring cylinder	1
				1
		(ii)	Starch (solution) (1)	
			blue/dark blue/blue-black/black to colourless (1) ALLOW max 1 if candidate states "no indicator needed/self-indicating"	
			with colour change brown/yellow to colourless	
			<i>If no indicator given but correct colour change</i> 1 (out of 2)	2
		(jiji)	$\frac{24.0}{1000} \times 2.4(0) \times 10^{-4}$ OR 0.00024 (mol)	
		(111)	1000 × 2.4(0) × 10 × 10 × 0.00024 (1101)	
			The mark is for the answer	1
		<i>/</i> • ``	2.40×10^{-4} 1.2(0) 10^{-4} () 0.2.2.2.2.1 ()	
		(1V)	$\frac{2.40 \times 10^{-4}}{2} = 1.2(0) \times 10^{-4} \text{ (mol) } OR \ 0.00012 \text{ (mol)}$	
			ALLOW TE from (iii)	
			The mark is for the answer	1


(v) $1.2 \times 10^{-4} \times 100 = 0.012(0) \text{ (mol dm}^{-3}\text{)}$

ALLOW TE from (iv) The mark is for the answer

[12]

1

4. (i) (Buchner) flask / boiling tube connected to pump, glass tube through stopper into solution eg

But must be a test tube and tube to bottom as shown

- (ii) $8H^+ 4H_2O$ ACCEPT multiples
- (iii) Number of moles of manganate(VII) ion = $\frac{20 \times 0.020}{1000}$ =0.0004(0)(1)

Number of moles of electrons $= 5 \times 0.00040 = 0.002(0)$ (1)

Number of moles of vanadium ions

$$=\frac{10\times0.10}{1000}=0.001\,(\mathbf{1})$$

(as vanadium(V) is formed by loss of 2 moles of electrons) Oxidation number of vanadium in aerated solution is +3 (1)

4

1

(iv) It is a powerful oxidising agent, $E^{\Theta} = +1.51 \text{ V}$ *OR* It is self-indicating

[7]

1

5.

(a) (i) uses
$$E^{\bullet}$$
 values to find $E_{\text{reaction}} = (+) 1.57$ (V) (1)
 $Reject - 1.57$
 $Zn + 2NO_3^- + 4H^+ \rightarrow Zn^{2+} + 2NO_2 + 2H_2O$ (1)
Accept equation with equilibrium sign
Rejection equation with Zn on the right

(ii) E_{reaction} for the production of hydrogen is (+) 0.76 (V) (1) smaller than reaction in (i) so is less likely (1) OR
 NO - being the oridized form of a radex couple with a magnetic statement of a radex couple with a magnetic statement.

 NO_3^- being the oxidised form of a redox couple with a more positive E^{\bullet} than $E^{\bullet}\,H^+/^{1}\!\!\!/_{2}\,H_2$ (1)

is a stronger oxidising agent than $H^+(1)$

(iii) hexaaquacopper(II) (1)

$$\begin{bmatrix}
 & OH_2 \\
 & H_2O \\
 & H_2O \\
 & H_2O \\
 & OH_2 \\
 & OH_2 \\
 & OH_2 \\
 & H_2O \\
 & OH_2 \\
 &$$

[IGNORE charge] [IGNORE how H₂O ligand is bonded to central cation]

Accept hexaquacopper(II)

Reject formula

(iv) **ligand** exchange/replacement/substitution (1)

$$[Cu(H_2O)_6]^{2+} + 4Cl^{-} \rightleftharpoons CuCl_4^{2-} + 6H_2O (1)$$

OR

$$[Cu(H_2O)_6]^{2+} + 4HCl \rightleftharpoons CuCl_4^{2-} + 4H^{+} + 6H_2O (1)$$

ALLOW \rightarrow
Accept $H_2CuCl_4 + 2H^{+}$ for $CuCl_4^{2-} + 4H^{+}$

(b) (i) E^e for the reaction is – 0.39 (V) (so not feasible) [value is required]. 1
 Accept Cu²⁺ being the oxidised form of the redox couple with the more negative E^e, will not oxidise Γ

(ii) CuI is a solid (so conditions are not standard) (1)
 Equilibrium is pulled over/moves to favour the r.h.s. (1)
 Reject just 'conditions not standard'

(iii) $[Cu(NH_3)_4]^+$

OR
$$[Cu(NH_3)_4(H_2O)_2]^+$$
 1
Accept $[Cu(NH_3)_2]^+$

Reject $[Cu(NH_3)_6]^+$ Reject any 2+ complex

(iv) (atmospheric) oxygen (1)
 oxidises Cu⁺ to Cu²⁺ (1)
 Reject air for oxygen

(c) (i) starch (1) blue-black/blue/black to colourless (1)

Reject clear for colourless

(ii) (If added too early) insoluble complex/black solid formed, making titre too low

OR (If added too early) insoluble complex/black solid formed, removes iodine from solution

OR (If added too early) insoluble complex/black solid formed, causes inaccurate titre.

OR (If added too early) insoluble complex/black solid formed, not all the iodine is titrated.

		(iii)	Amount this sulphate = $0.01655 \text{ dm}^3 \times 0.1 \text{ mol dm}^{-3}$ (1)		
			= amount Cu^{2+} in 25.0 cm ³ = 1.655×10^{-3} mol (1)		
			amount of Cu^{2+} in 250 cm ³ = $1.655 \times 10^{-3} \times 10$ (1)		
			mass of Cu (in sample) = $1.655 \times 10^{-2} \times 63.5$ (1) = 1.051 g		
			% Cu in brass = 1.051 × 100/1.5 = 70 % (1) [IGNORE sf]		
			[mass of 1.051g with working scores (4); correct answer with no working scores (3).]	_	
			Mark consequentially	5	[22]
(a 10	$4s^1$ and $3d^{10}$	1	
6.	(a)	<i>3a 2</i>		1	
			Accept $4s^1 3d^{10}$		
	(b)	(i)	QWC*		
			the $(3)d$ sub-shell is full (1)		
			Accept orbitals (it must be plural) for sub-shell		
			Reject comments on partially filled sub-shell		
			so no d-d transitions are possible OR no transitions in the right energy range are possible (1) (and no light is absorbed)		
			Any mention of light emission loses 2^{nd} mark	2	
		(ii)	combine the half-reactions to get $2Cu^+ \rightarrow Cu^{2+} + Cu$ (1) IGNORE state symbols		
			and show that E^{\bullet} for this is (+) 0.37 (V) (and as it is positive it is feasible) (1)		
			conditional on correct reaction	2	
			Reject just '> $0.3 (V)$ '		
		(iii)	activation energy (for the disproportionation) is high OR		
			Cu ⁺ is kinetically stable	1	
			<i>Reject activation energy for one of the half-equations is too high</i>		
	(c)	(i)	divides each by atomic mass (1)		
			divides by smallest to obtain $Cu_2SO_6H_2$ (1)	2	
			Division by atomic number scores zero		

(ii) $CuSO_4.Cu(OH)_2$ (2)

If formula wrong but sulphate/ SO4 is present scores 1 (out of 2)

Accept Cu₂SO₄(OH)₂ Accept Cu₂(OH)₂SO₄ Accept (CuOH)₂SO₄

*Reject HSO*₄ *instead of SO*₄

(iii)
$$[Cu(NH_3)_4(H_2O)_2]^{2+}$$

Accept $[Cu(NH_3)_4]^{2+}$ Reject $[Cu(NH_3)_6]^{2+}$

(iv) ligand exchange / ligand substitution

(d) (i) QWC

(ii)

(add aldehyde to 2,4–DNP) to obtain precipitate/ppt/solid/crystals (1)
recrystallise derivative (1)
determine melting temperature of derivative (1)
compare with data tables (1) 4th mark conditional on melting temperature of a derivative being measured *Reject any identification method based on IR, NMR or mass for last 2 marks*the aldehyde is distilled off as it is formed

Reject any mention of reflux Reject just 'the aldehyde is distilled off'

(iii) propanoic acid OR CH_3CH_2COOH OR $CH_3CH_2CO_2H$ 1 Accept C_2H_5 for CH_3CH_2

(iv) No (extra) oxygen present
 OR catalyst specific to formation of aldehyde / only lowers E_a of first oxidation
 OR presence of hydrogen gives reducing conditions
 OR copper is not an oxidising agent
 OR aldehydes rapidly leave catalyst surface

2

1

1

4

1

(v)	(At high pressure) all active sites are occupied/full
	OR (At higher pressures) rate controlled by availability of sites.
	Accept reverse argument for low pressure

7. (a) (i)

Cr: [Ar] $3d^54s^1$ Cu: [Ar] $3d^{10}4s^1$ Both needed for the mark

Accept 4s¹3d⁵ Accept 4s¹3d¹⁰ Accept [Ar] written in full

(ii) all the others are $4s^2$ / have full 4s orbital (1)

Accept Cr and Cu/they do not have a full 4s orbital Reject just 'only have one electron in 4s' OR Have incomplete 4s orbital

The d subshell is more stable when either half or fully filled OR A specific example of chromium having half-filled or

copper having filled d sub-shell/**set** of d orbitals which is more stable (1)

Accept sub-energy levels d shell

Reject half-filled or filled d orbital(s)

(b) (i) Octahedral drawn must be 3-D IGNORE any or no charge

Accept $-H_2O$ (bond to H) except on water molecules on left of Cr

(ii) Dative bond formed from electron pair/lone pair on oxygen (of the water molecule) to the ion

This could be shown on a diagram Accept a clear description of the dative bond

Reject 'dative' alone or from water

Reject just "dative bond formed from oxygen"

[20]

1

1

2

1

 $[Cr(H_2O)_6]^{3+} + OH^- \rightarrow [Cr(H_2O)_5OH]^{2+} + H_2O$ (iii) OR $[Cr(H_2O)_6]^{3+} + 2OH^- \rightarrow [Cr(H_2O)_4(OH)_2]^+ + 2H_2O^-$ OR $[Cr(H_2O)_6]^{3+} + 3OH^- \rightarrow Cr(OH)_3 + 6H_2O$ OR $[Cr(H_2O)_6]^{3+} + 3OH^- \rightarrow [Cr(H_2O)_3(OH)_3] + 3H_2O$ First mark is for the correct Cr product Second mark is conditional on the first and is for the rest 2 of the equation correct and balanced Forms a green precipitate (1) (iv) IGNORE initial colour of solution (which reacts or dissolves or changes to) a green solution (with excess reagent) (1) Accept any shade of green 2nd mark is conditional on an initial ppt 2 (v) acid / acidic 1 Accept amphoteric/able to be deprotonated Reject coloured ions/ligand exchange/ deprotonation /partially filled d orbitals Check working - correct answer can be obtained by not dividing (i) by 2 for 2nd mark and not multiplying by 2 for 4th mark amount thiosulphate in titre = $0.0372 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3}$ $= 3.72 \times 10^{-3} \text{ mol (1)}$ amount $I_2 = \frac{3.72 \times 10^{-3}}{2}$ (1) = 1.86 × 10⁻³ mol

2nd mark cq on amount thiosulphate

amount dichromate in 25 cm³ = $\frac{1.86 \times 10^3}{3}$ (1) = 6.2×10^{-4} mol

3rd mark cq on amount I₂

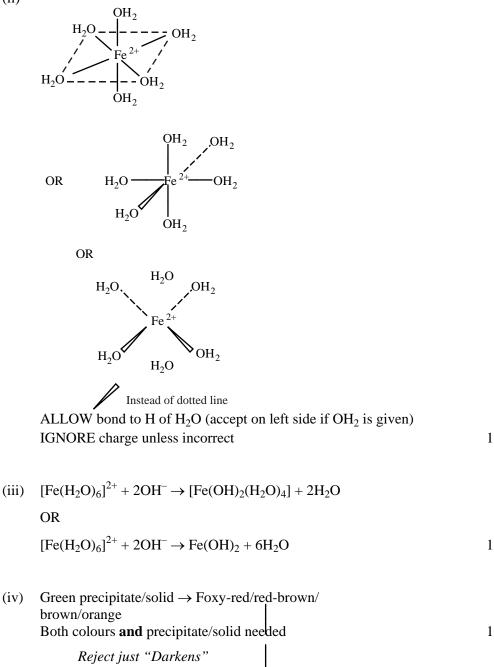
(c)

Total mass $Cr = 6.2 \times 10^{-4} \text{ mol} \times 2 \times 10 \times 52 \text{ g mol}^{-1}$ (1) = 0.645 g 4th mark cq on amount dichromate

% of Cr = 64.5 % (1) IGNORE SF unless rounded to 1 SF cq on mass Cr, provided less than 1 g

Accept 64.48 %

	OR amount thiosulphate for whole sample = $0.0372 \text{ dm}^3 \times 0.100 \text{ mol } \text{dm}^{-3} \times 10$ = $3.72 \times 10^{-2} \text{ mol } (1)$ amount I ₂ = $1.86 \times 10^{-2} \text{ mol } (1)$		
	amount dichromate = $6.2 \times 10^{-3} \text{ mol } (1)$ mass Cr = $6.2 \times 10^{-3} \text{ mol} \times 2 \times 52 \text{ g mol}^{-1} (1)$ = 0.645 g		
	% of Cr = 64.5% (1) IGNORE SF unless rounded to 1sf Mark consequentially, as above		
	Note: Correct answer with no working (3)	5	
(ii)	Colour at the end point would be green which would prevent the loss of iodine colour being seen OR		
	colour change at end point would be disguised by the colour of Cr^{3+}	1	
	Accept chromium instead of Cr^{3+}		
	<i>Reject end point disguised by colour of</i> $Cr_2O_7^{2-}/orange$		[16]


8.	(a)	В	1	
	(b)	C	1	[2]
9.	С			[1]
10.	D			[1]
11.	D			[1]

12. (a) (i) $Fe[Ar] 3d^64s^2$ in either order, allowing superscripts to be subscripts $Fe[Ar] 3d^6$ or $3d^64s^0$ in either order, allowing superscripts to be subscripts Letter d must be lower case

1

Reject any other letters

(ii)

(b) (i) QWC

	Emf of cell/ potential difference of cell containing Fe (1)			
	dipping into a 1 mol $dm^{-3} Fe^{2+}$ solution (1)			
	And standard hydrogen electrode/half cell			
	OR hydrogen electrode and 1 mol $dm^{-3} H^+$ and 1 atm H_2			
	OR description of standard hydrogen electrode (1) IGNORE temperature	3		
	Reject'SHE'			
(ii)	QWC			
	Emf of hydrogen electrode is zero – <i>stated or implied</i> e.g. if calculate $E_{cell} = +0.44 \text{ V} (1)$			
	Potential for the reaction is positive so reaction is feasible OR Fe half cell has more negative electrode potential			
	OR H^+ and $(\frac{1}{2})H_2$ has a more positive electrode potential (1)	2		

(iii) High E_a so slow reaction / reactants are kinetically stable *IGNORE any mention of non-standard conditions*

[10]