1. (a) (i) The potential difference between a standard hydrogen electrode and the (half-) cell (1)
all concentrations measured at $1 \mathrm{~mol} \mathrm{dm}^{-3}$ and any gases are at 1 atm pressure (1)
(ii) Fluorine or $\mathrm{F}_{2} \mathbf{(1)} 1$
(b) (i) all/listed (1) 1
(ii) iodine and bromine (1) 1
(iii) This answer is consequential on part (ii)

Mix solution of $\mathrm{Cr}(\mathrm{II})$ - blue with the oxidising agent given in (ii) (1) goes green and stays green / but does not go orange (1)
2. (a) (i) $[\operatorname{Ar}] 3 \mathrm{~d}^{6}$ (1)
allow $1 \mathrm{~s}^{2}$ etc
(b) (i) - $\mathrm{Zn} / \operatorname{Iron}(\mathbf{1})$ not the zinc ion or iron ion

- more negative potential than $-0.28 \mathrm{~V}(\mathbf{1})$

NB this mark must show evidence of use of the data
gives $+E$ for reduction reaction (1)
consequential on second mark
(ii) - rate too slow / activation energy too high / kinetically stable / allow oxide layer if metal electrode specified (1)

- non-standard conditions (1)
(c) (i) $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ (1)
(ii) Example:
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CoCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
Any valid equation that shows a ligand exchange but begins with $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(\mathbf{1})$
ligand exchange correctly balanced (1) 2

3. (a) (i) Use E^{θ} values for reduction of Fe^{3+} to Fe^{2+} by $\mathrm{Zn}\left(\mathrm{E}^{\theta}\right.$ cell $\left.=+1.53 \mathrm{~V}\right)$ (1) and Fe^{2+} to Fe by $\mathrm{Zn}\left(\mathrm{E}_{\text {cell }}^{\theta}=+0.32 \mathrm{~V}\right)(\mathbf{1})$
They have positive E^{θ} so are feasible (1) NOT "will happen" OR
ALLOW $\mathrm{Zn}^{2+} / \mathrm{Zn}$ is more negative than both $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ (1) so zinc is a stronger reducing agent (1) so zinc reducing both is feasible (1)
(ii) Reduction of Fe^{2+} has high activation energy / kinetically stable
(b) (i) $\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

Species (1)
Balance (1)
Any state symbols ignored.
(ii) purple colour of MnO_{4}^{-}lost (1)
end point when yellow / colourless solution (1) becomes (permanently) pink (1)
(c) Amount MnO_{4}^{-}in $1^{\text {st }}$ titration $=0.0182 \mathrm{dm}^{3} \times 0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$
$=3.64 \times 10^{-4} \mathrm{~mol}(\mathbf{1})$
Amount Fe^{2+} in original solution $=5 \times$ above value $=1.82 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
Amount Fe^{2+} in $2^{\text {nd }}$ titration $=$ amount of Fe^{2+} and Fe^{3+} original solution (1)
$=0.0253 \mathrm{dm}^{3} \times 0.0200 \mathrm{~mol} \mathrm{dm}^{3} \times 5=2.53 \times 10^{-3} \mathrm{~mol}$
Amount of Fe^{3+} in original solution $=0.00253-0.00182=7.10 \times 10^{-4} \mathrm{~mol}(\mathbf{1})$
Amount zinc needed to reduce $\mathrm{Fe}^{3+}=1 / 2 \times 0.000710=0.000355 \mathrm{~mol}$
Mass of zinc $=0.000355 \mathrm{~mol} \times 65.4 \mathrm{~g} \mathrm{~mol}^{-1}=0.0232 \mathrm{~g}$ (1) 2,3 or 4 SF Consequential on their moles iron
The marks are for the following processes:
Either volume of MnO_{4}^{-}to moles of MnO_{4}^{-}(1)
Convert to moles of Fe^{2+} by multiplying either moles of MnO_{4}^{-}by 5 (1)
Realising that $2^{\text {nd }}$ titration measures total number of moles of iron (1))
Subtracting to get original moles Fe^{3+} (1)
Going to moles Zn then mass Zn (1)

OR
Volume MnO_{4}^{-}for Fe^{3+}, which has been reduced by zinc (1) $3^{\text {rd }}$ point
$=25.3 \mathrm{~cm}^{3}-18.2 \mathrm{~cm}^{3}=0.0253 \mathrm{dm}^{3}-0.0182 \mathrm{dm}^{3}=0.0071 \mathrm{dm}^{3}(\mathbf{1}) 4^{\text {th }}$ point
Amount of $\mathrm{MnO}_{4}{ }^{-}=0.0071 \mathrm{dm}^{3} \times 0.0200 \mathrm{~mol} \mathrm{dm}{ }^{-3}=1.42 \times 10^{-4} \mathrm{~mol}(1) 1^{\text {st }}$ point

Amount Fe^{3+} reduced by zinc $=5 \times$ above value $=7.10 \times 10^{-4} \mathrm{~mol}(\mathbf{1}) 2^{\text {nd }}$ point
Amount zinc needed $=1 / 2 \times 7.10 \times 10^{-4}=3.55 \times 10^{-4} \mathrm{~mol}$ mass of zinc needed $=3.55 \times 10^{-4} \mathrm{~mol} \times 65.4 \mathrm{~g} \mathrm{~mol}^{-1}=0.00232 \mathrm{~g}$ (1) $5^{\text {th }}$ point
(d) (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{H}_{3} \mathrm{O}^{+}$in equation (1)
other ion in equation (1)
(Fe^{2+}) polarises the $\mathrm{O}-\mathrm{H}$ bond in ligand (1)
(ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ more acidic than $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ (1)
Fe^{3+} higher charge density than Fe^{2+} (1)
Fe^{3+} ion if more polarising (1)
4. (a) (i) The potential (difference) / e.m.f. (of a half-cell) relative to the standard hydrogen electrode (1)"
Concentrations (of all ions) $1 \mathrm{~mol} \mathrm{dm}^{-3}$ and (any gases at) pressure 1 atm (1) Ignore any references to temperature
(ii) One from:

Can only measure a potential difference
Or
So that comparisons can be made between any half cells
(b) (i) $5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 5 \mathrm{O}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ (2)
(1) for species
(1) for balancing the correct species
$\Delta \mathrm{E}^{\ominus}{ }_{\text {reaction }}=+0.84(\mathrm{~V})(\mathbf{1})$
or if just states " 0.84 ", must mention that this is a positive value
(ii) Fizzing/bubbles (1)
(pink) colour lost / stays colourless (1)
(end point) solution remains pink / pale purple (1)
(iii) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ (1)

O (in $\mathrm{H}_{2} \mathrm{O}_{2}$) oxidised from -1 to 0 (in O_{2}) (1)
O (in $\mathrm{H}_{2} \mathrm{O}_{2}$) reduced from -1 to $-2\left(\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)(1)$
5. (a) (i) $\frac{\mathrm{Fe}[\mathrm{Ar}]}{3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}}$
or $3 \mathrm{~d}_{6} 4 \mathrm{~s}_{2}$
or 3d64s2
or $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$ (1)
$\frac{\mathrm{Fe}^{2+}[\mathrm{Ar}]}{3 \mathrm{~d}^{6}}$
or $3 \mathrm{~d}_{6}$
or $3 d^{6} 4 s^{0}$ (1)
Letter d must be lower case
Any additional letters of numbers (0)
(ii) The mark is for the shape

OR

Instead of dotted line
ALLOW bond to H of $\mathrm{H}_{2} \mathrm{O}$ (except on left side if OH_{2} is given) IGNORE charge unless incorrect
(iii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$

OR
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
OR equations with 2 NaOH as reactant and $2 \mathrm{Na}^{+}$as product IGNORE state symbols
(iv) Green precipitate / solid \rightarrow foxy-red / red-brown / brown / orange Both colours and precipitate / solid needed NOT darkens
(v) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow / \rightleftharpoons \rightleftharpoons_{2} \mathrm{NH}^{3}$

$$
A L L O M O+\mathrm{Br}_{7} \rightarrow \mathrm{O}^{-\mathrm{Br}}+\mathrm{HBr}
$$

OR equation with Cl_{2}
(b) (i) Emf of cell / potential difference of cell containing Fe^{2+} and Fe (1) and standard hydrogen electrode / half cell NOT 'SHE' $O R$ hydrogen electrode and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}^{+}$and 1 atm H_{2} (1)
$1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}$
IGNORE temperature

QWC*(ii) Emf of hydrogen electrode is zero - stated or implied (e.g. if calculate $\left.\mathrm{E}_{\text {cell }}=+0.44(\mathrm{~V})\right)(\mathbf{1})$
$\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}(\mathbf{1})-$ equation stand alone
Potential for the reaction is positive so reaction is feasible (1)
OR
H^{+}and $(1 / 2) \mathrm{H}_{2}$ has a more + ve electrode potential than Fe^{2+} and Fe (1)
H^{+}will oxidise $\mathrm{Fe} / \mathrm{H}^{+}$is an oxidising agent / Fe is a reducing agent for H^{+}/ other correct redox statement (1)
$\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}(\mathbf{1})-$ stand alone
(iii) High E_{a} so slow reaction / reactants are kinetically stable IGNORE any mention of non-standard conditions
(c) $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ or words $\mathrm{E}^{0}=(+) \mathbf{0 . 2 3 V}(\mathbf{1})$

So I^{-}would reduce $\mathrm{Fe}^{3+} / \mathrm{Fe}^{3+}$ would oxidise $\mathrm{I}^{-} / \mathrm{E}^{0}$ positive so reaction $\mathrm{L} \rightarrow \mathrm{R}$ (1)
$O R$ reverse argument (2)
OR
Fe^{3+} and Fe^{2+} has a more positive electrode potential than I_{2} and $\mathrm{I}^{-}(\mathbf{1})$
I^{-}will reduce $\mathrm{Fe}^{3+} / \mathrm{Fe}^{3+}$ will oxidise I^{-}(1)
6. (a) The emf of a half-cell measured relative to the standard hydrogen electrode (1) all solutions at $1 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration and gases at 1 atm pressure / 101 kPa and at a stated temperature / 298K (1) Standalone mark

ALLOW pressure of 100 kPa
(c) (i) $2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq})$ or multiples

OR
$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$
Species (1)
balancing (1)
Do not allow species mark if electrons still in equation, but allow balancing mark if 4e on both sides
(ii) $\Delta \mathrm{E}_{\text {react }}^{\Theta}=(+) 0.84(\mathrm{~V})(\mathbf{1})$

Greater than zero therefore feasible (1)

QWC (iii) Zn oxidises preferentially to $\mathrm{Fe} / \mathrm{Zinc}$ acts as sacrificial (anode) (1) If Sn used (and damaged), Fe oxidises; preferentially (1) Disallow "oxidises more readily"
$\mathrm{E}^{\Theta} \mathrm{Zn}^{2+} / \mathrm{Zn}$ more negative than for Fe OR
$\mathrm{E}^{\Theta} \mathrm{Zn} / \mathrm{Zn}^{2+}$ more positive than for Fe OR
E^{θ} cell for Zn being oxidised by O_{2} is more positive than for Fe being oxidised by O_{2}
OR
similar E^{\ominus} arguments related to preferential oxidation with Sn (1)
disallow "higher" or "bigger" for more negative or more positive
7. (a) (i) Forms ions which have partially filled d-orbitals

OR
Forms ions which have a partially filled d-subshell
(ii) Scandiurn / Sc and Zinc / Zn
(b) (i) $\mathrm{Fe}^{2+}[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{Mn}^{2+}[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
(1) for both correct
(ii) $\quad \mathrm{Fe}^{3+}$ is $3 \mathrm{~d}^{5} /$ half filled d-subshell which is more stable than $3 d^{6}$ (1) Mn^{2+} is (already) $3 \mathrm{~d}^{5}$ (which is more stable than $3 \mathrm{~d}^{4}$) (1)
(c) Shape (1)

Bonding to correct atoms (1)
(4-)
(4-)

OR

2
(d) Two As atoms oxidised from +3 to +5 per mole of $\mathrm{As}_{2} \mathrm{O}_{3}$
(loss of $4 \mathrm{e}^{-}$) (1)
\therefore if 5 moles oxidised, total $20 \mathrm{e}^{-}$Lost / change in oxidation no. $=20$ (1)
$\therefore 4$ moles $\mathrm{MnO}_{4}{ }^{-}$reduced, total $20 \mathrm{e}^{-}$gained / change in oxidation no. 20
\therefore each $\mathrm{Mn}(\mathrm{VII})$ gains $5 \mathrm{e}^{-} /$change in oxidation no. 5 (1)
$\therefore \mathrm{Mn}(\mathrm{ll}) / \mathrm{Mn}^{2+}$ (1) NOT standalone mark
(e) (i) $\mathrm{VO}_{3}^{-}+2 \mathrm{H}^{+} / 2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{VO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} / 3 \mathrm{H}_{2} \mathrm{O}$
(ii) No because oxidation no. of V is +5 in VO_{2}^{+}/ Oxidation no. of V unchanged (at +5)
(iii) First green colour : $\mathrm{VO}_{2}{ }^{+}$and VO^{2+}

Second green colour : $\mathrm{V}^{3+} /\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
Violet colour : $\mathrm{V}^{2+} /\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, (1)
8. (a) $3 \mathrm{OCl}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$(1)
chlorine (in OCl^{-}) is (simultaneously) oxidised from +1 to +5 (1)
and reduced from +1 to -1 (1)
If only oxidation numbers given max 1 (out of 2)
If oxidation numbers omitted max 1 (out of 2)
(b) (i) blue / black to colourless
(ii) no. moles $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ used $=12.5 \times 0.1 / 1000=1.25 \times 10^{-3}$ (1)
no. moles $\mathrm{I}_{2}=1.25 \times 10^{-3} / 2=6.25 \times 10^{-4}$ (1)
no. moles $\mathrm{ClO}^{-}=$no. moles 1_{2} (1)
no. moles ClO^{-}in original $10 \mathrm{~cm}^{3}=10 \times 6.25 \times 10^{-4}$

$$
=6.25 \times 10^{-3}
$$

no. moles ClO^{-}in $1 \mathrm{dm}^{3}=100 \times 6.25 \times 10^{-3} \mathbf{(1)}=0.625$
(iii) mass $\mathrm{Cl}_{2}=0.625 \times 71$
$=44.4(\mathrm{~g})$
mark consequentially on (ii)
must be 3s.f. in final answer
(c) Cl_{2} is the stronger oxidising agent because Cl_{2} oxidises S from $(+) 2$ to (+)6 (1)
but l_{2} oxidises S from (+)2 to (+)2.50 (1)

QWC (d) O_{2} oxidises KI / iodide to l_{2}. or balanced equation (1) ll_{2} reacts with starch / paper to give blue / black (1)
9. (a) (i) EITHER
$\Delta \mathrm{E}^{\theta}=(+) 0.15(\mathrm{~V}) \mathrm{OR} \mathrm{E}^{\theta}\left(\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}\right)$ more positive or greater than E^{θ}
$\left(\mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right)$; accept reverse argument (1)
(so) MnO_{4}^{-}reacts with $\mathrm{Cl}^{-} \mathrm{OR} \mathrm{Cl}{ }^{-}$ions form Cl_{2}
OR KMnO_{4} reacts with $\mathrm{HCl}(1)$
OR
$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{Cl}^{-} \rightarrow^{-} 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cl}_{2}$
$\mathrm{E}^{\theta}=(+) 0.15(\mathrm{~V})(\mathbf{1})$
(ii) stated colour change of colourless to (pale) pink NOT purple OR
stays (pale) pink
OR pink to colourless
OR first excess of (coloured) manganate((VII))
IGNORE "self-indicating"
IGNORE references to Mn^{2+}
(b) (i) (Multiply iron half-equation by five to) cancel out electrons OR balance electrons
(ii) Moles $\mathrm{MnO}_{4}{ }^{-}=\frac{0.0200 \times 20.10}{1000}$

$$
=0.000402 \mathrm{~mol} \mathrm{MnO}_{4}^{-} \mathbf{(1)}
$$

Moles Fe^{2+} per $25.0 \mathrm{~cm}^{3}$ $=5 \times 0.000402$

$$
=0.00201 \mathrm{~mol} \mathrm{Fe}^{2+}(\mathbf{1})
$$

Moles Fe^{2+} per $200 \mathrm{~cm}^{3}=0.00201 \times \frac{200}{25}$ mol Fe ${ }^{2+}$

$$
=0.01608 \mathrm{~mol} \mathrm{Fe}^{2+}(\mathbf{1})
$$

Mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=0.01608 \times 278$
$=4.47 \mathrm{~g}$ or via concentrations (1)
Percentage purity $\quad=\frac{4.47}{6.00} \times 100 \%$
= 74.5\% (1) ALLOW 74.7\% / 75\%

Correct answer + working (5)
ALLOW 2 or more sig figs
If start by dividing $\frac{6.00}{278}$, and final answer is incorrect, candidate can access first three marks only.
If third step omitted, answer 9.3\% OR 9.33\% OR 9.4\%
(c) (i) $\mathrm{E}^{\theta}=+1.46-(-0.13)=(+) \mathbf{1 . 5 9}(\mathrm{V})$

Correct answer alone (1)
PbSO_{4} precipitated (1)
(ii)
$\left[\mathrm{H}^{+}{ }_{(\text {aq })}\right]$ not $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
$\left[\mathrm{Pb}^{2+}{ }_{(\text {aq })}\right]$ not $1 \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
the conditions (in the car battery) are not standard (1)
"temperature non-standard" alone or "not 1 atm pressure"
alone does not score
10. (a) (i) uses E^{\ominus} values to find $E_{\text {reaction }}=(+) 1.57(\mathrm{~V})(\mathbf{1})$

Reject-1.57
$\mathrm{Zn}+2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (1)
Accept equation with equilibrium sign
Rejection equation with Zn on the right
(ii) $\quad E_{\text {reaction }}$ for the production of hydrogen is $(+) 0.76(\mathrm{~V})(\mathbf{1})$
smaller than reaction in (i) so is less likely (1)
OR
$\mathrm{NO}_{3}{ }^{-}$being the oxidised form of a redox couple with a more positive E^{\ominus} than $\mathrm{E}^{\ominus} \mathrm{H}^{+} / 1 / 2 \mathrm{H}_{2}$ (1)
is a stronger oxidising agent than $\mathrm{H}^{+}(\mathbf{1})$
(iii) hexaaquacopper(II) (1)

OR

Both marks stand alone
[IGNORE charge]
(1)
[IGNORE how $\mathrm{H}_{2} \mathrm{O}$ ligand is bonded to central cation]
Accept hexaquacopper(II)
Reject formula
(iv) ligand exchange/replacement/substitution (1)
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{CuCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$
OR
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightleftharpoons \mathrm{CuCl}_{4}{ }^{2-}+4 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$
ALLOW \rightarrow
Accept $\mathrm{H}_{2} \mathrm{CuCl}_{4}+2 \mathrm{H}^{+}$for $\mathrm{CuCl}_{4}{ }^{2-}+4 \mathrm{H}^{+}$

(b) (i) $\quad E^{\ominus}$ for the reaction is $-0.39(\mathrm{~V})$ (so not feasible) [value is required] Accept Cu^{2+} being the oxidised form of the redox couple with the more negative E^{θ}, will not oxidise Γ

(ii) CuI is a solid (so conditions are not standard) (1)

Equilibrium is pulled over/moves to favour the r.h.s. (1)
Reject just 'conditions not standard'
(iii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$

OR $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$
Accept $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
Reject $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+}$
Reject any 2+ complex
(iv) (atmospheric) oxygen (1)
oxidises Cu^{+}to Cu^{2+} (1)
Reject air for oxygen
(c) (i) starch (1)
blue-black/blue/black to colourless (1)
Reject clear for colourless
(ii) (If added too early) insoluble complex/black solid formed, making titre too low

OR (If added too early) insoluble complex/black solid formed, removes iodine from solution

OR (If added too early) insoluble complex/black solid formed, causes inaccurate titre.
OR (If added too early) insoluble complex/black solid formed, not all the iodine is titrated.
(iii) Amount thiosulphate $=0.01655 \mathrm{dm}^{3} \times 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$ $=$ amount Cu^{2+} in $25.0 \mathrm{~cm}^{3}=1.655 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$ amount of Cu^{2+} in $250 \mathrm{~cm}^{3}=1.655 \times 10^{-3} \times 10$ (1) mass of Cu (in sample) $=1.655 \times 10^{-2} \times 63.5 \mathbf{(1)}=1.051 \mathrm{~g}$ $\% \mathrm{Cu}$ in brass $=1.051 \times 100 / 1.5=70 \%(\mathbf{1})$ [IGNORE sf]
[mass of 1.051 g with working scores (4); correct answer with no working scores (3).] Mark consequentially
11. (a) e.m.f. of a half cell relative/compared to a (standard) hydrogen electrode OR
voltage produced from a half cell joined to a hydrogen electrode (1)
Accept potential (difference) /voltage for emf
Accept emf of a cell with standard hydrogen as the left electrode

Accept a description of the half cell e.g. a metal dipping into a solution of its ions

Reject SHE
(solutions at) $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ concentration, (gases at) $1 \mathrm{~atm} / 100 \mathrm{kPa} /$ 105Pa/ 1 Bar pressure and stated temperature (1)
all 3 conditions needed STAND ALONE
Accept 101 kPa
Accept 298 K or $25^{\circ} \mathrm{C}$
If any other temperature is quoted it must be as an example of a stated temperature
Reject 'constant' pressure "STP"
Reject room temperature
Reject just "273 K"
(b) Can only measure a potential difference/emf
(if a reference electrode is present)
OR
voltmeter needs 2 connections
OR
Cannot measure the potential difference between a metal and a
solution of its ions
Reject just "electron source and sink"
Reject to make comparisons between half cells
(c) (i) $\underline{1}^{\text {st }}$ mark
(simultaneous) oxidation and reduction of a (single) species/ substance/ reactant/compound/chemical

Reject oxidation and reduction occur at the same time
Or the oxidation state/number is both increased and decreased of a (single) species/ substance/ reactant/ compound/chemical

Reject oxidation states are ...
Or a (single) species/ substance/ reactant/compound/ chemical both loses and gains electrons (1)
$\underline{2}^{\text {nd }}$ mark
For a given type of atom within an ion/ molecule
Or Illustrated by a suitable example in which the individual atom is identified (1)
(ii) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}(\mathbf{1})$

Reject $2 \mathrm{H}^{+}$on both sides of equation
$\mathrm{E}_{\text {cell }}=(+) 1.09(\mathrm{~V})(\mathbf{1})$
Reject greater than any other stated number
$\mathrm{E}_{\text {cell }}$ is positive/greater than 0 so the reaction is feasible (1)
$3^{\text {rd }}$ mark must be cq on sign of $\mathrm{E}_{\text {cell }}$
(iii) activation energy of the reaction may be high

OR
reaction too slow to be observed
Reject just "Not enough energy to overcome the activation energy"
Reject conditions are non-standard
Reject just "kinetically stable"
12. (a) (i) The activation energy for the reaction is high or to ensure that more molecules have $E \geq E_{a}$.

Accept $E>E_{a}$
Reject to overcome E_{a} alone
Reject reactants kinetically stable; reactants thermodynamically stable
(ii) protonates the alcohol (1)
Reject 'as a catalyst' alone
providing $\mathrm{H}_{2} \mathrm{O}$ as the leaving group which is more easily displaced by the bromide ion/is a better leaving group than hydroxide (1)
OR
reacts with $\mathrm{NaBr}(\mathbf{1)}$
to give HBr (which is the attacking reagent) (1)
(iii) H-bonding between water and the alcohol not strong enough to overcome hydrophobic interactions /effect of alkyl group (1)
acid and alcohol form ionic species $/ \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}_{2}{ }^{+}$which is more soluble (1)
Accept butyl group
(iv) Removes acid
Accept neutralises $\mathrm{HCl} / \mathrm{HBr}$
Accept neutralises acid
$\begin{array}{ll}\text { (v) Removes water } & 1 \\ \text { Accept absorbs water } \\ \text { Accept dries the product }\end{array}$
(vi) Electric heating mantle or sand bath or oil bath (1)
Accept water bath
Reject heat under reflux
Reject no naked flame
Reject fume cupboard
because the alcohol/reaction mixture/bromobutane is
flammable or because the heating is uniform and less
likely to crack the flask (1)
This mark is conditional on the first being scored.
Reject 'volatile' for 'flammable'
(b) QWC

EITHER

Intermediate (ion) in $\mathrm{S}_{\mathrm{N}} 1$ is planar (1)
Accept intermediate carbocation is a planar molecule intermediate molecule alone loses this mark
equal attack (by hydroxide ions) from either side (1)
produces a racemic mixture (1)
Reject attack by bromide ions
Note: Statement that the $\mathrm{S}_{\mathrm{N}} 2$ mechanism is consistent with the information cannot score any marks.

OR

$\mathrm{S}_{\mathrm{N}} 2$ involves attack from one side (1)
so configuration of the product would be inverted (1)
leading to retention of optical activity so must be SN1 (1)
Accept forms one optical isomer only
Statement that the reaction is $\mathrm{S}_{\mathrm{N}} 1$ alone scores zero.
(c) (i) Orange \rightarrow green
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{e}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ (1)
$\left(3 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}\right)$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+$ $3 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ (1)

No consequential marking on incorrect equations.
Accept $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ and $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
Accept equation having non-cancelled H^{+}ions
Reject equation having non-cancelled electrons
(iii) The broad peak/absorption/trough around $3400 \mathrm{~cm}^{-1}$ due to - OH (1)

Accept 3230-3550
Reject broad transmission
has disappeared in the product to be replaced by $\mathrm{C}=\mathrm{O}$ at $1700 \mathrm{~cm}^{-1}$ (1)
Accept 1680-1750
If no reference to both groups responsible for the peaks then max (1)
OR
If no reference to both wavenumbers responsible for the peaks then max (1)
(d) (i) Addition of barium ions pulls equilibrium to r.h.s. (1) increases $\left[\mathrm{H}^{+}\right]$and so lower $\mathrm{pH} /$ the pH falls (1) stand-alone mark

Reject '..so gets more acidic'
(ii) lower $\mathrm{pH} / \mathrm{pH}$ falls

Reject 'mixture is more acidic' for 'lower $p H$ '
13. A
14. A
15. C
16. D
17. (a) B
(b) C
18. (a) (i) $\mathrm{Fe}[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$ in either order, allowing superscripts to be subscripts $\mathrm{Fe}[\mathrm{Ar}] 3 \mathrm{~d}^{6}$ or $3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ in either order, allowing superscripts to be subscripts Letter d must be lower case
(ii)

OR

OR

Instead of dotted line
ALLOW bond to H of $\mathrm{H}_{2} \mathrm{O}$ (accept on left side if OH_{2} is given)
IGNORE charge unless incorrect
(iii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$

OR
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
(iv) Green precipitate/solid \rightarrow Foxy-red/red-brown/
brown/orange
Both colours and precipitate/solid needed
Reject just "Darkens"
(b) (i) QWC

Emf of cell/ potential difference of cell containing Fe (1)
dipping into a $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Fe}^{2+}$ solution (1)
And standard hydrogen electrode/half cell
OR hydrogen electrode and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}^{+}$and 1 atm
H_{2}
OR description of standard hydrogen electrode (1)
IGNORE temperature
(ii) QWC

Emf of hydrogen electrode is zero - stated or implied e.g. if calculate $\mathrm{E}_{\text {cell }}=+0.44 \mathrm{~V}$ (1)

Potential for the reaction is positive so reaction is feasible OR Fe half cell has more negative electrode potential
OR H^{+}and $(1 / 2) \mathrm{H}_{2}$ has a more positive electrode potential (1)
(iii) High E_{a} so slow reaction / reactants are kinetically stable IGNORE any mention of non-standard conditions 1

