Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	$(50 \times 4.18 \times 15.5=) 3239.5(\mathrm{~J})$		$\mathbf{1}$
	IGNORE any sign given ALLOW 3.2395 kJ (units are essential for this answer)		

Question Number	Acceptable Answers	Reject	Mark
1(b)	$\left.\begin{array}{l} (1.46 \div 56.1=) 0.026025 . .(\mathrm{mol}) \\ (\Delta \mathrm{H}=3.2395 \div 0.026025=-124.47 \ldots) \\ -124 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{array}\right)$ ALLOW the use of $\mathrm{CaO}=56$ $=\left(-124.255 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-124 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ALLOW TE from answer to (a)	+ sig	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i)}$	Any three reasons from:	Incomplete reaction Heat/energy loss (to the surroundings / to the apparatus)/ Lack of lid/no lid/ heat capacity of the cup not taken into account/heat capacity of the (1) cup is not zero Inaccuracy of thermometer/temperature (1) readings Impure CaO/Absorbed moisture from the air	Just 'heat lost to the thermometer'
Heat capacity is not 4.18/ the mass of solution is not 50 g/ density of solution is (1) not 1 g cm			
IGNORE non-standard conditions/ stirring/human error/incomplete transfer of solid			

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline \mathbf{1 (c) (i i)} & \begin{array}{l}\text { Marking point 1 } \\
(\mathrm{Q}=(250 \times 4.18 \times 25)=26125(\mathrm{~J}) \\
\text { OR } \\
(26125 \div 1000=) 26.125(\mathrm{~kJ}) \\
\text { Marking point 2 } \\
(\mathrm{n}=26.125 \div 196.8=) 0.132749(\mathrm{~mol}) \\
\text { Marking point 3 } \\
\text { Mass }=(0.132749 \times 56.1=) \\
7.4472189=7.45(\mathrm{~g})\end{array}
$$ \& (1) \\
\begin{array}{ll}ALLOW \\
(0.132749 \times 56=) 7.433944 \\
=7.43(\mathrm{~g}) \\

Correct answer alone scores 3 marks\end{array} \& (1) \& 7.5\end{array}\right]\)| |
| :--- |

Question Number	Acceptable Answers	Reject	Mark
1(d)(i))	arking point 1 Arrow downwards from CaCO_{3} to the box, with $2 \mathrm{HCl}((\mathrm{aq}))$ alongside Marking point 2 Correct entities and states in box $\begin{equation*} \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \tag{1} \end{equation*}$ Marking point 3 Correct use of Hess' Law ($\Delta \mathrm{H}=\Delta \mathrm{H}_{\text {Caco3 }}-\Delta \mathrm{H}_{\mathrm{CaO}}$) e.g. $\quad-18.8--196.8=$ Marking point 4 $\Delta \mathrm{H}=+178\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		4

Question Number	Acceptable Answers	Reject	Mark
1(d) (ii)	Products on line below $\mathrm{CaCO}_{3}(\mathrm{~s})$ with both arrows going down from CaCO_{3} and CaO ALLOW the word 'products' for formulae		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a)}$	(Contains) only (C-C) single bonds/ only σ bond(s) OR (Contains) no (C=C) double bond(s)/no triple bond(s) OR Cannot undergo addition (reactions) ALLOW Has maximum number of hydrogen atoms / has maximum amount of hydrogen /can form no more bonds / no pi-bonds. IGNORE references to alkanes (Compound of) carbon and hydrogen	(1)	"Mixture of carbon and hydrogen only"
ONLY/ ENTIRELY/ PURELY	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i)}$	Measure mass (of cylinder) before and after (burning)	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i)}$	Energy transferred $=(100 \times 4.18 \times 27.1=)$ $11327.8(\mathrm{~J}) / 11.328 \mathrm{~kJ}$ Ignore SF except 1 SF	1	

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	$\begin{equation*} \text { Mol propane }=0.33 / 44=0.0075 \tag{1} \end{equation*}$ $\begin{align*} & \Delta \mathrm{H}_{\mathrm{c}}=(-11.3278 / 0.0075)=(-1510.4) \\ & =-1510\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Sign and 3SF Allow TE from b(ii)		3

Question Number	Acceptable Answers	Reject	Mark
2(b)(iv)	Incomplete combustion Allow carbon monoxide forms soot forms	Evaporation of water Transfer losses	1
	Not under standard conditions	Not all the fuel burns	

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	Balancing and state symbol required		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i i)}$	$\left.\begin{array}{l}\mathrm{Z}=(6 \times \mathrm{C}=\mathrm{O}+8 \times \mathrm{O}-\mathrm{H}=4830+3712) \\ =(+) 8542(\mathrm{~kJ} \mathrm{~mol}\end{array}\right)$	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i i i)}$	$\Delta \mathrm{H}_{x}=6490-8542=-2052\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		1
	Allow TE from 21(c)(ii)		

Question Number	Acceptable Answers	Reject	Mark
2(c)(iv)	Bond energy calculation based on $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ OR $\Delta \mathrm{H}_{c}{ }^{\ominus}$ based on $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	1	
	Allow Bond energy varies with environment/ mean bond energies do not equal actual bond energies for these reactants Ignore reference to standard conditions		1

Total = 12 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i)}$	$25 \times 4.18 \times 11=1149.5$ (J) ALLOW $1.1495 \mathbf{k J}$ Otherwise ignore units even if incorrect IGNORE sign IGNORE SF except one or two SF	$1149.5 \mathbf{k J}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$-115 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ALLOW -115000 $\mathrm{J} \mathrm{mol}^{-1}$ Sign with correct value Units and three significant figures Mark independently ALLOW TE from (i) $-114 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (rounding error) scores 1 $-115.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ scores 1 Values of -4600 and -3.86 are quite common ALLOW K and j in any case in units	J or kJ alone	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c)}$	$((\pm) 0.5 \times 2 \times 100 / 11)$ $=(\pm) 9.09(\%)$ ALLOW at 9.0909/9.091/9.1 and 9	9.10/9.0	

Question Number	Acceptable Answers	Reject	Mark
3(d))	irst mark It is used as a raising agent / self raising flour / baking soda / baking powder OR Causes cakes / (soda) bread to rise / expand. Second mark Carbon dioxide (released on heating causes cakes / bread to rise) OR It reacts with acid to form carbon dioxide (in baking powder) providing bread /cake etc is mentioned ALLOW Used in cooking green vegetables To keep green colour	To make pastry rise Bicarbonate of soda Gas Air Neutralizing acid foods	2

Question Number	Acceptable Answers	Reject	Mark
4(a)	The heat/enthalpy/energy change (for a reaction) is independent of the path(way)/route IGNORE any extra detail referring to "injtitial and final states"		1

Question Number	Acceptabile Answers	Reject	Mark
4(b)(i)	$\mathrm{CO}_{2}+\mathbf{2} \mathrm{H}_{2} \mathrm{O}$ (1) Both arrows in correct direction downwards (1) IGNORE state symbols, even if incorrect Mark the two points independently		2

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	$\Delta \mathrm{H}=-890-(-283)$ $=-607\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	(1) Correct answer with no working scores (2)	
NOTE: $+607\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (1) only			

Question Number	Acceptable Answers	Reject	Mark
*4 (b) (i	Cannot stop the reaction at CO OR the reaction produces CO_{2} /complete combustion occurs OR may produce some carbon/soot OR cannot react exact amounts of methane to oxygen	non-standard conditions J ust incomplete combustion occurs J ust forming 'other products' /just a 'mixture of products' Just methane is 'very reactive'/ 'explosive’ J ust heat loss Cannot measure the temperature change	1

Question Number	Acceptable Answers	Reject	Mark
4(c)	First mark: State of the $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ Water is in the gas phase/water is (formed) as steam/water is not in its standard state/water is not (formed as a) liquid Second mark: I dea of an energy change when there is a change of state Change of state involves an energy change /energy change (for the reaction given) is less exothermic ALLOW 'more endothermic' instead of 'less exothermic' IGNORE references to non-standard conditions	Energy change is more exothermic /less endothermic Heat loss 'Incomplete combustion'	2

Question Number	Correct Answer	Reject	Mark
$\mathbf{5 (a)}$	F mark Enthalpy change when 1 mol of gaseous ions (1)	Energy required or energy taken in	$\mathbf{2}$
ALLOW energy change/heat change/energy evolved/released/ given out/exothermic Second mark Is dissolved/hydrated/solvated such that further dilution causes no further heat change OR Is dissolved to produce an infinitely dilute solution/in excess water	Atoms or molecules (0)	1 mol of water	
ALLOW Is dissolved to produce a solution of 1.0 mol dm			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (b) (i)}$	$\mathrm{K}^{+}(\mathrm{aq})(+) \mathrm{F}^{-}(\mathrm{aq})$	$\mathrm{K}^{+} \mathrm{F}^{-}(\mathrm{aq})$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (b) (i i)}$	$\Delta \mathrm{H}_{\text {sol }}=-\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}$		$\mathbf{1}$
	OR		
$\Delta \mathrm{H}_{\text {sol }}=\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}$			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (b) (i i i)}$	(Standard) Lattice(enthalpy/energy/ $\Delta \mathrm{H})$	LE/Lat - Lattice	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
5(b)(iv)	First mark Selection of (-)817 rather than (-)807 Second mark $\Delta \mathrm{H}_{\text {sol }}=817-805=(+) 12\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Just (+) $12\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ ALLOW TE for second mark e.g. for 807 gives (+) $2\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ ALLOW TE from incorrect b(ii)	-12 (max 1)	2

Question Number	Acceptable Answers	Reject	Mark
5(c)(i)	EITHER No change/no measurable change in temperature OR (Very small) decrease in temperature (1) Thermometer not sensitive/ precise enough/precision of thermometer is + or $-0.5^{\circ} \mathrm{C} /$ graduations too large Amount of energy taken in is small / $\Delta \mathrm{H}_{\text {sol }}$ is small/mass of sodium chloride is small/slightly endothermic	Any reference to temp increase /exothermic Just accuracy $+/-1^{\circ} \mathrm{C}$	3

Question Number	Acceptable Answers	Reject	Mark
*5(c)(ii)	(The reaction is endothermic so) Entropy(change) of surroundings decreases OR ΔS sur is negative OR $-\Delta H / T$ is negative But entropy (change) of system increases (as there is an increase in disorder) OR $\Delta S_{\text {sys }}$ is positive Increase in entropy of system outweighs/greater than decrease in entropy of surroundings / value for entropy change of system is greater than entropy change of surroundings Total entropy (change) is positive All marks are stand alone	$S_{\text {sur }}$ is negative $S_{\text {sys }}$ is positive	4

Question Number	Acceptable Answers	Reject	Mark
*5(d)	Any four from: The difference between Born Haber and theoretical LE is greater for Lil than for LiCl (845 and $848=$) 3 for LiCl whereas (738 and 759 =) 21 for Lil lodide ion is larger than chloride ion/lower charge density on iodide ion The iodide ion is more likely (than the chloride ion) to be polarized (by lithium ion) Lil likely to have more covalent character than LiCl	Reject values with + Iodine/Chlorine atoms or molecules Iodine/Chlorine atoms or molecules	4

