| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1 <br> (a) (i | Product in box: $\mathrm{CuSO}_{4}(\underline{\mathrm{aq}})(1)$ <br> Either <br> Mark the arrows and then the labels: <br> Two downward arrows (1) <br> labelled with symbols or values with or without units (1) <br> OR <br> Mark each arrow and label separately Downward arrow \& $\Delta \mathrm{H}_{1}$ or value (1) <br> Downward arrow \& $\Delta \mathrm{H}_{2}$ or value (1) <br> Allow reversed arrows with reversed signs on $\Delta \mathrm{H}$ <br> I gnore any other labels on the arrows. <br> Ignore $5 \mathrm{H}_{2} \mathrm{O}$ in bottom product |  | 3 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1 \\ & (\mathrm{a})(\mathrm{ii}) \end{aligned}$ | Award higher mark from: <br> Route 1 <br> Mark the calculation based on their cycle TE from (a)(i) ignoring incorrect bottom product <br> Route 2 <br> Mark a calculation which is independent of the cycle <br> $\Delta H_{\text {reaction }}=\Delta H_{1}-\Delta H_{2}$ stated or implied $\begin{aligned} & =+11.5-(-66.1)(\mathbf{1}) \\ & =(+) 77.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}) \end{aligned}$ <br> Correct answer alone scores (2) <br> $-77.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ alone or from a correct addition scores (1) |  | 2 |
| Question Number | Acceptable Answers | Reject | Mark |
| 1 (b) | Dehydration reaction cannot be controlled <br> OR temperature change (of dehydration reaction) cannot be measured <br> OR <br> $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ would need heating (so temperature change cannot be measured) <br> OR impossible to add exact amount of water (to obtain value by reverse process) <br> OR cannot mix solid with water to obtain perfect crystals | Temperature of solid / crystals cannot be measured | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & * 1 \\ & (c)(i) \end{aligned}$ | First \& second marks stand alone <br> 1. Pipette/burette / measuring cylinder / balance to transfer (a known amount of) (water) (1) <br> 2. to (expanded) polystyrene cup / calorimeter / any insulated container allow coffee / plastic cup (1) <br> Third \& fourth marks only awarded if correct chemicals and procedure used <br> 3. add solid and stir (allow mix or shake) mixture (1) <br> 4. measure initial and final temperature allow temperature change (1) | Just mass / volume measured <br> Temperature increase unless exothermic penalised in (b) | 4 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline 1 \\ & (\mathrm{c})(\mathrm{ii}) \end{aligned}$ | Any three from: <br> - heat transfer (from surroundings) (allow loss or gain) <br> - approximation in (specific) heat capacity of solution <br> - neglecting (specific) heat capacity of calorimeter/apparatus (allow energy absorbed by the apparatus) <br> - reaction / dissolving may be incomplete/slow <br> - temperature change is very small (and difficult to measure) <br> - Density of solution is taken as the same as water <br> - conditions not standard (allow) | Errors in calculation including adding mass of solid to mass of water <br> loss of reagents / water incomplete combustion Just 'difficult to measure' | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ~}$ | H. <br> (1) for around carbon and its hydrogens <br> (1) for around oxygen and its hydrogen |  |  |
|  | Allow all dots or all crosses <br> lgnore circles around atoms |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i ) ~}$ | $\mathrm{C}(\mathrm{s}) /$ (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$ <br> Correct species (1) <br> Allow oxygen above arrows rather than in box <br> Balancing and state symbols (1) <br> Second mark dependent on correct species <br> except as below with either hydrogen or <br> oxygen or both as atoms <br> e. <br> $\mathrm{C}(\mathrm{s}) /$ (graphite) $+4 \mathrm{H}(\mathrm{g})+4 \mathrm{O}(\mathrm{g})$ <br> Scores second mark | $\mathbf{2}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i i ) ~}$ | Enthalpy / energy / heat(energy) change when <br> one mole of a substance (1) | heat required / <br> heat given out / <br> heat taken in | $\mathbf{3}$ |
| Is formed from its elements (in their most <br> stable / standard states) (1) <br> Under standard conditions of $298 \mathrm{~K} / 25^{\circ} \mathrm{C} /$ any <br> stated temperature AND 1 atm pressure / <br> $101 \mathrm{kPa} / 100 \mathrm{kPa}(1)$ <br> Definitions based on lattice enthalpies may <br> score third mark only |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2 (b)(iii) | $\Delta H^{\theta}{ }_{\mathrm{c}}=-\Delta \mathrm{H}_{1} \theta+\Delta \mathrm{H}_{2}{ }^{\theta}(\mathbf{1})$ $\begin{aligned} & =(2 \times-285.8+-393.5)-(-239.1) \\ & =-726(1) \end{aligned}$ <br> Ignore units <br> Correct answer alone $=2$ marks $+726=1$ <br> $-440.2=1$ if omit multiply by 2 |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c ) ( i )}$ | $20.7 \times 200 \times 4.18=17305(.2)(\mathrm{J})$ <br> ignore sf except 1 sf i.e. 20000 <br> OR <br> $20.7 \times 200 \times 0.00418=17.305(2) \mathrm{kJ}$ <br> ignore sf except 1 sf i.e. 20 <br> ignore signs <br> ignore $\mathrm{mol}^{-1}$ | $\mathbf{1}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c ) ~ ( i i ) ~}$ | $0.848 / 32=0.0265(\mathrm{~mol})$ <br> ignore sf except 1 sf i.e. 0.03 | $\mathbf{1}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c ) ( i i i ) ~}$ | $17305.2 / 0.0265=-653000\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)(3 \mathrm{sf})$ <br> OR <br> $-653(\mathrm{~kJ} \mathrm{~mol})(3 \mathrm{sf})$ <br> Ignore missing units but penalise incorrect <br> units <br> Allow TE from (c)(i) \& (ii) | $\mathbf{1}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( c ) ( i v ) ~}$ | Any two from <br> As heat/ energy absorbed by apparatus / <br> heat/ energy 'lost' to surroundings (1) <br> methanol not completely burnt / incomplete <br> combustion (1) <br> methanol 'lost' by evaporation (1) <br> cannot ensure all products are at standard <br> conditions at end of reaction / water is <br> produced as a gas / reaction not carried out in <br> the standard conditions (1) | just <br> heat/ energy <br> loss | just incomplete <br> reaction |


| Question | Correct Answer |  |  | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 (a)(i) |  |  |  |  | 3 |
|  | Energy change | Letter | $\Delta \mathrm{H} / \mathrm{kJ}$ $\mathrm{mol}^{-1}$ |  |  |
|  | Lattice energy for sodium chloride | E | -77 |  |  |
|  | Enthalpy change of atomization of sodium | C | +10 |  |  |
|  | Enthalpy change of atomization of chlorine | A | +12 |  |  |
|  | First ionization energy of sodium | B | +49 |  |  |
|  | First electron affinity of chlorine | F |  |  |  |
|  | Enthalpy change of formation of sodium chloride | D | -41 |  |  |
|  | 6 correct letters (3) 5 or 4 correct letters (2) 3 or 2 correct letters (1) 1 or 0 correct letters (0) |  |  |  |  |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3 (a)(ii) | Expression such as: $\begin{align*} & D=C+B+A+F+E \\ & -411=+109+494+121+F+ \\ & (-5) \\ & F=-411-109-494-121+775 \tag{1} \end{align*}$ <br> Answer: $F=-360\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$ <br> Check empty box in 22(a)(i), as answer may be written there. <br> Answer must follow from working <br> Correct answer only (2) <br> Correct answer with some consistent working (2) |  | 2 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ( i ) ~}$ | (Bonding in NaCl) 100\% ionic <br> OR <br> almost completely ionic <br> OR <br> no covalent character/ (very) little <br> covalent character | 'Molecule' (0) | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(ii) <br> QWC | Agl has (a degree of) covalent <br> character (1) |  | $\mathbf{2}$ |
| due to polarization or distortion (of <br> the anion) (1) |  |  |  |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3 \text { (c) } \\ & \text { QWC } \end{aligned}$ | Any two of the following: <br> - (outermost) electron further from the nucleus/ atoms get bigger/ more shells <br> - (outermost) electron more shielded (by inner shells of e-) <br> - (force of) attraction between nucleus and (outermost) electron decreases (down the Group) OR (outermost) electron held less strongly (down the Group) OR (outermost) electron becomes easier to remove (down the Group) <br> IGNORE any references to(effective) nuclear charge or more protons. | "ions" get bigger (down Group) | 2 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ( a ) ( i )}$ | $\frac{2.90}{58}=0.05(00)(\mathrm{mol})$ |  |  |
| correct answer only (1) |  |  |  |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4 (a)(ii) | $200 \times 4.18 \times 58.2$ <br> $=48655(J)$ OR 48.655 kJ (1) <br> for correct $\triangle T(\mathbf{1})$ | $\mathbf{2}$ |  |
| IGNORE sf <br> IGNORE signs at this stage |  |  |  |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4 (a)(iii) | $\begin{aligned} & \hline-\frac{48655}{0.0500}=-973100\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \\ &=-973 \mathrm{~kJ} \mathrm{~mol}^{-1}(3 \mathrm{~s} . \mathrm{f} .) \\ & \text { / }-973000 \mathrm{~J} \mathrm{~mol}^{-1}(3 \mathrm{s.f.}) \end{aligned}$ <br> sign and units (1) <br> [Do not award sign and units mark if units given are just "kJ" or just "J "] <br> three sig figs (1) <br> CQ on (a)(i) \& (ii) |  | 3 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ( b ) ( i )}$ | Heat loss/ energy loss <br> Accept <br> Incomplete combustion <br> OWTTE <br> IGNORE "experimental error"/ <br> "departure from standard conditions" | Anything related to "average <br> values" (0) | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4 (b)(ii) | Difference: less exothermic / less <br> negative <br> IGNORE "higher" if written with <br> less exothermic/ less negative <br> Accept just "lower"/ "less" | Just "higher" (0) | 2 |
|  | J ustification: energy taken in to <br> form gas/ energy required to form <br> gas/ energy needed to form gas/ takes <br> heat in to form gas/ heat required to <br> form gas <br> Or reverse argument <br> Mark these two points <br> independently | Just " $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is not water's <br> standard state" |  |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4 (c)(i) | Enthalpy / energy / heat (energy) change <br> (when) one mole of a substance/ one mole of a compound most stable states) <br> $298 \mathrm{~K} / 25^{\circ} \mathrm{C} /$ a stated temperature AND 1 atm pressure/ 100 kPa <br> IGNORE any references to concentration | "energy required" <br> OR <br> "energy released" <br> "one mole of product(s)" <br> is formed from its reactants <br> room temperature/ rtp | 3 |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4 (c)(ii) | Cycle or formula expression |  | 3 |
|  |  |  |  |
|  | $\Delta \mathrm{H}_{\mathrm{f}}=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}$ |  |  |
|  | $=(2 x-394)+(2 x-286)-(-870)$ |  |  |
|  | $=-490\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ |  |  |
|  | - correct expression or cycle <br> - evidence for doubling both $\Delta H^{\theta}{ }_{c}[C]$ and $\Delta H^{\theta}{ }_{c}\left[H_{2}\right]$ |  |  |
|  | - answer |  |  |
|  | Correct answer with no working scores full marks |  |  |

