Question Number	Acceptable Answers	Reject	Mark
1 (a) (i	Product in box: CuSO₄(<u>aq</u>) (1) Either		3
	Mark the arrows and then the labels: Two downward arrows (1) labelled with symbols or values with or without units (1)		
	OR		
	Mark each arrow and label separately Downward arrow & ΔH_1 or value (1)		
	Downward arrow & ΔH_2 or value (1)		
	Allow reversed arrows with reversed signs on ΔH		
	Ignore any other labels on the arrows.		
	Ignore $5H_2O$ in bottom product		
	$CuSO_{4.}5H_2O(s) \xrightarrow{\Delta H_{reaction}} CuSO_4(s) + 5H_2O(l)$		
	\bigtriangleup H ₁ / +11.5 \bigtriangleup H ₂ /-66.1		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	Award higher mark from: Route 1 Mark the calculation based on their cycle TE from (a)(i) ignoring incorrect bottom product Route 2 Mark a calculation which is independent of the cycle $\Delta H_{\text{reaction}} = \Delta H_1 - \Delta H_2$ stated or implied = +11.5 - (-66.1) (1) = (+) 77.6 (kJ mol ⁻¹) (1)		2
	Correct answer alone scores (2) -77.6 (kJ mol ⁻¹) alone or from a		

Question Number	Acceptable Answers	Reject	Mark
1 (b)	Dehydration reaction cannot be controlled OR temperature change (of dehydration	Temperature of solid / crystals cannot be measured	1
	reaction) cannot be measured OR CuSO ₄ .5H ₂ O would need heating (so temperature change cannot be measured)		
	OR impossible to add exact amount of water (to obtain value by reverse process) OR		
	obtain perfect crystals		

Question Number	Acceptable Answers	Reject	Mark
*1	First & second marks stand alone		4
(c)(i)			
	 Pipette/burette / measuring cylinder / balance to transfer (a known amount of) (water) (1) 	Just mass / volume measured	
	 to (expanded) polystyrene cup / calorimeter / any <i>insulated</i> container allow coffee / plastic cup (1) 		
	Third & fourth marks only awarded if correct chemicals and procedure used		
	 add solid and stir (allow mix or shake) mixture (1) 		
	 measure initial and final temperature allow temperature change (1) 	Temperature increase unless exothermic penalised in (b)	

Question Number	Acceptable Answers	Reject	Mark
1 (c) (ii)	 Any three from: heat transfer (from surroundings) (allow loss or gain) approximation in (specific) heat capacity of solution neglecting (specific) heat capacity of calorimeter/apparatus (allow energy absorbed by the apparatus) reaction / dissolving may be incomplete/slow temperature change is very small (and difficult to measure) Density of solution is taken as the same as water conditions not standard (allow) 	Errors in calculation including adding mass of solid to mass of water loss of reagents / water incomplete combustion Just 'difficult to measure'	3

Question Number	Acceptable Answers	Reject	Mark
2 (a)	H:C:C:C:H H:C:C:C:H H (1) for around carbon and its hydrogens (1) for around oxygen and its hydrogen Allow all dots or all crosses Ignore circles around atoms		2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	C(s) / (graphite) + 2H ₂ (g) + 2O ₂ (g) Correct species (1) Allow oxygen above arrows rather than in box Balancing and state symbols (1) Second mark dependent on correct species except as below with either hydrogen or oxygen or both as atoms e. C(s) / (graphite) + 4H(g) + 4O(g) Scores second mark		2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Enthalpy / energy / heat(energy) change when one mole of a substance (1)	heat required / heat given out / heat taken in	3
	Is formed from its elements (in their most stable / standard states) (1)		
	Under standard conditions of 298K/ 25 °C / any stated temperature AND 1 atm pressure / 101 kPa / 100 kPa (1)		
	Definitions based on lattice enthalpies may score third mark only		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	$\Delta H_{c}^{\Theta} = -\Delta H_{1}^{\Theta} + \Delta H_{2}^{\Theta} (1)$		2
	= (2 x -285.8 + -393.5) - (-239.1) = -726 (1) Ignore units		
	Correct answer alone = 2 marks		
	+726 = 1		
	-440.2 = 1 if omit multiply by 2		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	20.7 x 200 x 4.18 = 17305(.2) (J) ignore sf except 1 sf i.e. 20000		1
	OR		
	20.7 x 200 x 0.00418 = 17.305(2) kJ ignore sf except 1 sf i.e. 20		
	ignore signs ignore mol ⁻¹		

Question Number	Acceptable Answers	Reject	Mark
2 (c) (ii)	0.848/32 = 0.0265 (mol)		1
	ignore sf except 1 sf i.e. 0.03		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	17305.2/0.0265 = -653000 (J mol ⁻¹) (3sf)		1
	OR		
	–653 (kJ mol ⁻¹) (3sf)		
	Ignore missing units but penalise incorrect units		
	Allow TE from (c)(i) & (ii)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iv)	Any two from		2
	As heat/energy absorbed by apparatus / heat/energy 'lost' to surroundings (1) methanol not completely burnt / incomplete combustion (1)	just heat/energy loss just incomplete	
	methanol 'lost' by evaporation (1) cannot ensure all products are at standard conditions at end of reaction / water is produced as a gas / reaction not carried out in the standard conditions (1)	reaction	

Question Number	Correct Answer			Reject	Mark
3 (a)(i)					3
	Energy change	Letter	Δ <i>H</i> /kJ mol ⁻¹		
	Lattice energy for sodium chloride	E	-77		
	Enthalpy change of atomization of sodium	С	+10		
	Enthalpy change of atomization of chlorine	A	+12		
	First ionization energy of sodium	В	+49		
	First electron affinity of chlorine	F			
	Enthalpy change of formation of sodium chloride	D	-41		
	6 correct letters (5 or 4 correct letter 3 or 2 correct letter 1 or 0 correct letter	3) ers (2) ers (1) ers (0)			

Question Number	Correct Answer	Reject	Mark
3 (a)(ii)	Expression such as: D = C + B + A + F + E - 411 = + 109 + 494 + 121 + F + (- 5) F = - 411 - 109 - 494 - 121 + 775		2
	(1) Answer:		
	F = -360 (kJ mol ⁻¹) (1)		
	Check empty box in 22(a)(i), as answer may be written there.		
	Answer must follow from working		
	Correct answer only (2) Correct answer with some consistent working (2)		

Question Number	Correct Answer	Reject	Mark
3 (b)(i)	(Bonding in NaCl) 100% ionic OR	'Molecule' (0)	1
	almost completely ionic		
	OR		
	no covalent character/(very) little covalent character		

Question Number	Correct Answer	Reject	Mark
3 (b)(ii) QWC	Agl has (a degree of) covalent character (1) due to polarization or distortion (of the anion) (1)		2

Question Number	Correct Answer	Reject	Mark
3 (c) QWC	 Any two of the following: (outermost) electron further from the nucleus/atoms get bigger/more shells (outermost) electron more shielded (by inner shells of e⁻) (force of) attraction between nucleus and (outermost) electron decreases (down the Group) OR (outermost) electron held less strongly (down the Group) OR (outermost) electron becomes easier to remove (down the Group) <i>IGNORE</i> any references to(effective) nuclear charge or more protons. 	" ions " get bigger (down Group)	2

Question Number	Correct Answer	Reject	Mark
4 (a)(i)	$\frac{2.90}{58} = 0.05(00) \text{ (mol)}$		1
	correct answer only (1)		

Question Number	Correct Answer	Reject	Mark
4 (a)(ii)	200 x 4.18 x 58.2 = 48655 (J) OR 48.655 kJ (1) for correct Δ <i>T</i> (1) <i>IGNORE</i> sf <i>IGNORE</i> signs at this stage		2

Question Number	Correct Answer	Reject	Mark
4 (a)(iii)	 <u>48655</u> = -973 100 (J mol⁻¹) 0.0500 = -973 kJ mol⁻¹ (3 s.f.) / -973000 J mol⁻¹ (3 s.f.) answer (1) sign and units (1) [Do not award sign and units mark if units given are just "kJ" or just "J"] three sig figs (1) CQ on (a)(i) & (ii) 		3

Question Number	Correct Answer	Reject	Mark
4 (b)(i)	Heat loss/energy loss Accept Incomplete combustion OWTTE IGNORE "experimental error"/ "departure from standard conditions"	Anything related to "average values" (0)	1

Question Number	Correct Answer	Reject	Mark
4 (b)(ii)	Difference: less exothermic / less negative <i>IGNORE</i> "higher" if written with less exothermic/less negative Accept just "lower"/ "less" (1)	Just "higher" (0)	2
	Justification: energy taken in to form gas/energy required to form gas/energy needed to form gas/takes heat in to form gas/heat required to form gas Or reverse argument (1) Mark these two points independently	Just "H ₂ O(g) is not water's standard state"	

Question	Correct Answer	Reject	Mark
Number			
4 (c)(i)	Enthalpy / energy / heat (energy)	"energy required"	3
	change	OR	
	(when)	"energy released"	
	one mole of a substance/one mole of		
	a compound (1)	"one mole of product(s)"	
	is formed from its elements (in their		
	most stable states) (1)	is formed from its reactants	
	298K / 25°C / a stated temperature <u>AND</u> 1 atm pressure/100 kPa	room temperature/rtp	
	(1)		
	IGNORE any references to concentration		

Question Number	Correct Answer	Reject	Mark
4 (c)(ii)	Cycle or formula expression $+2O_2 + 2O_2 \Delta H_1$ $2CO_2(g) + 2H_2O(I)$ $\Delta H^{\theta}_{f} = \Delta H_1 - \Delta H_2$ = (2 x - 394) + (2 x - 286) - (-870) = -490 (kJ mol ⁻¹)		3
	• correct expression or cycle (1) • evidence for doubling both ΔH_{c}^{e} [C] and ΔH_{c}^{e} [H ₂] (1) • answer (1) Correct answer with no working scores full marks		