1	The va	lue of E_{cell} indicates whether the cell reaction is thermodynamically feasible.			
	Which	of the following is a correct statement about E_{cell} ?			
	⊠ A	E_{cell} is directly proportional to the equilibrium constant.			
	⊠ B	E_{cell} is directly proportional to the entropy change of the system, ΔS_{system} .			
	⊠ C	E_{cell} is directly proportional to the total entropy change, ΔS_{total} .			
	⊠ D	The value of $\ln E_{\rm cell}$ is directly proportional to the total entropy change, $\Delta S_{\rm total}$.			
		(Total for Question = 1 mark)			
		thalpy changes of the reactions below are similar. The equilibrium constants e two reactions are K_1 and K_2 respectively.			
	R	eaction 1 $[Cu(H_2O)_6]^{2+}(aq) + EDTA^{4-}(aq) \rightleftharpoons [Cu(EDTA)]^{2-}(aq) + 6H_2O(I)$			
	R	eaction 2 $[Cu(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \implies [CuCl_4]^{2-}(aq) + 6H_2O(l)$			
	The	alue of K_1 is greater than K_2 because			
	× A	ΔS_{system} is much more positive in Reaction 1.			
	× E	$\Delta S_{\text{surroundings}}$ is much more positive in Reaction 1.			
	\boxtimes C	the EDTA⁴⁻ is more highly charged than Cl⁻.			
		a lower concentration of EDTA⁴⁻is needed than Cl⁻.			
		(Total for Question = 1 mark)			
3	For the	eaction			
	$2{\rm NO_2(g)}\ \rightleftharpoons\ {\rm N_2O_4(g)}$ at 450 K the total entropy change, $\Delta S_{\rm total'}$ is negative. Hence the equilibrium constant, $K_{\rm p'}$ for this reaction at 450 K is				
	A 2	ero.			
	⋈ B	ositive and greater than 1.			
	⊠ C	positive and less than 1.			
	⊠ D	negative.			
		(Total for Question = 1 mark)			

4	The overall	equation	for a	reaction	between	two	chemicals,	Μ	and	N,	is
---	-------------	----------	-------	----------	---------	-----	------------	---	-----	----	----

$$M + 2N \rightarrow P + Q$$

(a) This reaction occurs spontaneously at room temperature. Which of the following **must** be true?

(1)

- \blacksquare **A** $\Delta H_{\text{reaction}}^{\ominus}$ is positive.
- \blacksquare **B** $\Delta H_{\text{reaction}}^{\ominus}$ is negative.
- \square **C** $\Delta S_{\text{total}}^{\ominus}$ is positive.
- \square **D** $\Delta S_{\text{total}}^{\ominus}$ is negative.
- (b) The reaction above occurs in two stages via an intermediate, T.

$$M + N \rightarrow T$$

$$N + T \rightarrow P + Q$$
 fast

slow

From this it can be deduced that the rate equation for the reaction between M and N is

(1)

- \triangle **A** rate = k[M][N]
- \blacksquare **B** rate = k[M][N]²
- \boxtimes **C** rate = k[M][T]
- \square **D** rate = k[N][T]

(Total for Question = 2 marks)

5	Calcium carbonate decomposes at high temperature to form calcium oxide and carbon dioxide:					
		$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$				
	Calcium carbonate is thermodynamically stable at room temperature because for this reaction					
	⊠ A	the activation energy is high.				
		the enthalpy change, ΔH , is positive.				
	⋈ C	entropy change of the system (ΔS_{system}) is positive.				
	⊠ D	entropy change of the system (ΔS_{system}) is negative.				
		(Total for Question = 1 mark)				
6		nylpropane has a smaller standard molar entropy at 298 K than butane. The best ation for this is that 2-methylpropane has				
	⊠ A	a lower boiling temperature.				
	⊠ B	a higher standard molar enthalpy change of formation.				
	C fewer ways of distributing energy quanta.					
	⊠ D	more ways of distributing energy quanta.				
		(Total for Question = 1 mark)				
7	The equ	ation for the reaction of iron and nickel(II) ions in aqueous solution is				
		$Fe(s) + Ni^{2+}(aq) \rightarrow Fe^{2+}(aq) + Ni(s)$				
	Under standard conditions the value of the equilibrium constant, K_c , for this reaction is greater than 1. Hence, for this reaction,					
	A A	$\Delta S_{ ext{total}}^{\ominus}$ and $E_{ ext{reaction}}^{\ominus}$ are both positive.				
	■ B	$\Delta S^{\ominus}_{total}$ is positive and $E^{\ominus}_{reaction}$ is negative.				
	⊠ C ∠	$\Delta S_{ ext{total}}^{\ominus}$ is negative and $E_{ ext{reaction}}^{\ominus}$ is positive.				
	■ D	$\Delta S_{ ext{total}}^{\ominus}$ and $E_{ ext{reaction}}^{\ominus}$ are both negative.				
		(Total for Question = 1 mark)				

8 The reaction below is carried out at 25 °C. Use the equation and the data to answer the questions that follow.

$$SO_2(g) + 2H_2S(g) \rightarrow 3S(s) + 2H_2O(g)$$
 $\Delta H = 107.4 \text{ kJ mol}^{-1}$

Substance	Standard molar entropy, S^{\oplus} / J mol ⁻¹ K ⁻¹			
$SO_2(g)$	248			
$H_2S(g)$	206			
$H_2O(g)$	189			
S(s)	32			

(a) The standard entropy change of the system, in $J \ mol^{-1} \ K^{-1}$, is

(1)

- **△ A** 186
- **B** +186
- **C** 233
- **D** +233
- (b) The standard entropy change of the surroundings, in J mol⁻¹ K⁻¹, is

(1)

- \triangle **A** 107.4 × 1000 / 25
- \blacksquare **B** 107.4 × 1000 / 25
- \square **C** 107.4 × 1000 / 298
- \square **D** 107.4 × 1000 / 298

(Total for Question 2 marks)

	\mathbf{X} A	water freeze	S.		
	\boxtimes B	water boils.			
	\boxtimes (water reacts	with sodium.		
	× D	water reacts	with ethanoyl chloride.		
				(Total for Question	1 mark)
10	Whic	h of the following	ng is true for the exothermi	c reaction shown below?	
		N	$Mg(s) + 2HCl(aq) \rightarrow Mg(s)$	$Cl_2(aq) + H_2(g)$	
	$\boxtimes \mathbf{A}$	ΔH	positive		
	\boxtimes B	$\Delta S_{ m surroundings}$	positive		
	区 C	$\Delta S_{ m system}$	negative		
	\boxtimes D	$\Delta S_{ m total}$	negative		
				(Total for Question $= 1$	mark)
11		of these solid sol		the greatest standard entropy? Us	se of
	\mathbf{A}	SnO			
	\square B	SnO_2			
		$SnBr_2$			
	\square D	$SnBr_4$			
				(Total for Question 1	mark)

9 A decrease in the entropy of the system, ΔS_{system} , occurs when

- 12 Which reaction has the most positive entropy change for the system, ΔS_{system} ?
 - \square A NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(1)
 - \square **B** AgNO₃(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO₃(aq)
 - \square C $C_2H_4(g) + HCl(g) \rightarrow C_2H_5Cl(l)$
 - \square **D** $C_4H_{10}(g) \rightarrow C_2H_4(g) + C_2H_6(g)$

(Total for Question 1 mark)

13 Barium carbonate decomposes in an endothermic reaction when heated to 1500 K.

$$BaCO_3(s) \rightarrow BaO(s) + CO_2(g)$$

What are the signs of the entropy changes at 1500 K?

		$\Delta S_{ m system}$	$\Delta S_{ m surroundings}$
×	A	+	+
×	В	+	
X	C		+
X	D		

(Total for Question 1 mark)

- 14 When ammonium nitrate crystals dissolve in water, the entropy of the system
 - **A** remains the same.
 - oxdots falls, because the hydrated ions are more ordered than the solid.
 - $oxed{\square}$ C rises, because the ions in the crystal become hydrated in the solution.
 - D rises, because the ions are arranged more randomly in the solution than in the crystal.

(Total for Question = 1 mark)