Question Number	Acceptable Answers	Reject	Mark
1 (a)	$\Delta S_{\text {system }}=(3 \times 2 \times 65.3+197.6)-(186.2+188.7)$ Correct data for CH_{4} and CO (186.2 and 197.6) (1) $\begin{align*} & =(+) 214.5 / 215\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & /(+) 0.2145 / 0.215 \mathrm{~kJ}^{\left(\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)} \tag{1} \end{align*}$ Units must be shown if data has been converted to kJ Full marks (2) for correct answer without working Ignore sf except 1 Answer of - 214.5 scores (1) Answer of +18.6 if entropy of H not doubled scores (1) Answer of -46.7 if entropy of H_{2} not tripled scores (1) ALLOW TE in second mark for minor error in data e.g. writing 63.5 instead of 65.3 . No TE if data used is not entropy of compounds.	$\begin{aligned} & 214 \\ & 0.214 \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}(\mathrm{b})$	$\left(\Delta S_{\text {surroundings })=\frac{-\Delta H}{T}}^{\text {Expression or use of expression, } \frac{-206.1 \times(1000)(1)}{298}} \begin{array}{l}\text { (1) } \\ =-691.6 \mathrm{~J}\left(\mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /-0.6916{\mathrm{~kJ}\left(\mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(1)}^{\text {lgnore sf except } 1}\end{array}\right.$		$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
1 (c)	$\begin{align*} \Delta S_{\text {total }}=(214.5+(-691.6)) & =-477.1\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) / \\ & -0.4771\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ ALLOW TE for answer to (a) plus answer to (b). If 214.5 is added to -0.69 no TE unless -0.69 is specified to be in joules. Ignore sf except 1 Negative / less than zero (so not spontaneous) / would be positive if spontaneous. (1) ALLOW "feasible" for spontaneous. If answer to calculation is positive, accept comment that it would be expected to be negative if not spontaneous	Addition of value in J to specified value in kJ Comments on kinetic stability	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d) (i i)}$	$\Delta S_{\text {total }}=(8.31 \ln 8.54)=(+) \mathbf{1 7 . 8}\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$ Accept any value that rounds to 17.8		$\mathbf{1}$
	TE from value in (i)		
K_{p} value of 87.48 (obtained by treating calculation in (i) as $\left.K_{c}\right)$ gives $\Delta S_{\text {total }}=37.16 /$ $\mathbf{3 7 . 1 2}$			

Question Number	Acceptable Answers	Reject	Mark
1 (d) (iii)	$\begin{align*} & 17.8=225-\frac{206.1 \times 1000}{T} \tag{1}\\ & \left.T=\frac{(206.1 \times 1000}{207.2}\right)=995 / 990(K) \tag{1} \end{align*}$ Correct answer with no working shown scores 2 Correct method with wrong answer or missing 10^{3} scores 1 TE from (ii) K_{p} value of 87.48 gives $\mathrm{T}=1097$ OR If $\Delta S_{\text {total }}$ is taken as zero $\begin{align*} & 0=225-\frac{206.1 \times 1000}{T} \\ & T=916 K \quad(1) \tag{1} \end{align*}$ K_{p} value of 87.48 gives $\mathrm{T}=916$ Ignore sf except 1		2

Question Number	Acceptable Answers	Reject	Mark
*1 (e)	$\Delta S_{\text {surroundings }} / \frac{-\Delta H}{T}$ becomes less negative making $\Delta S_{\text {total }}$ more positive (as T increases) OR $\Delta S_{\text {surroundings }} / \frac{-\Delta H}{T}$ becomes less negative making $\Delta S_{\text {total }}$ greater (as T increases) OR (magnitude of) $\Delta S_{\text {surroundings }}$ becomes less / lower making $\Delta S_{\text {total }}$ more positive / greater (as T increases)	Le Chatelier statements without reference to entropy changes	$\mathbf{2}$
Because $\Delta S_{\text {total }}$ increases equilibrium constant increases (1) OR value of $\Delta S_{\text {total }}$ at new temperature is more than at 298K (1) (must be clear that the two $\Delta S_{\text {total }}$ values at the different temperatures have been considered) Because $\Delta S_{\text {total }}$ increases equilibrium constant increases (1)	Just 'as temperature increases $\Delta S_{\text {total }}$ increases'		

Question Number	Acceptable Answers	Reject	Mark
2 (a)	$\Delta S^{\circ}{ }_{\text {total }}$ is positive / $\Delta S^{\circ}{ }_{\text {total }}$ > 0		
with or without superscript			
NOTE: This mark may be awarded from			
answer to Q25(b)(v)			
Accept ΔG° is negative	Just "the entropy is positive"	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i)}$	$(+) 27.3$ and $(+) 87.4\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ IGNORE incorrect units		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	$\begin{align*} \Delta S_{\text {sys }}^{o} & =(2 \times 87.4)-\{(4 \times 27.3+(3 \times 205.0)\} \tag{1}\\ & =-549.4 /-549\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ Correct answer with or without correct units IGNORE any wrong units Accept TE from (b)(i) NOTE: +549/+549.4 scores (1) Check working NOTE: $1^{\text {st }}$ mark: for $\mathrm{x} 2, \mathrm{x} 4$ and x 3 $2^{\text {nd }}$ mark: for (products - reactants), with correct arithmetic		2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	$\begin{aligned} & \Delta \mathrm{S}_{\text {surr }}=-\frac{\Delta \mathrm{H}}{T} \\ & =-\left(-1648 \times 10^{3}\right) \div 298(.15)\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & =(+) 5530\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & \text { OR } \end{aligned}$ $\begin{equation*} =(+) 5.53 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{equation*}$ NOTES: - Correct answer, with or without working, scores - If $5530\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ given, IGNORE any subsequent incorrect attempts to convert it to a value in $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ IGNORE s.f. except one s.f.	Just (+) 5.53 with no units OR $(+) 5.53 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iv)	$\begin{aligned} & \Delta \mathrm{S}_{\text {total }}=(-549.4)+(+5530) \\ & \quad=+4980.6 /+4981 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \mathrm{OR} \quad \\ & +4.981 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ (1) for value (1) for correct sign and units IGNORE s.f. except one s.f. Accept TE from (b)(ii) and (b)(iii)	Just the formula: $\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {sys }}^{0}+\Delta \mathrm{S}_{\text {surr }}$	2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(v)	($\Delta \mathrm{S}_{\text {system }}$ is negative): as loss of disorder as gas \rightarrow solid OR more order as gas \rightarrow solid OR as decrease in entropy as gas \rightarrow solid ($\Delta \mathrm{S}_{\text {surr }}$ is positive): (heat) energy released (increases kinetic energy and hence movement of the surrounding molecules) $\Delta \mathrm{S}_{\text {total }}$ is positive because $\Delta \mathrm{S}_{\text {surr }}$ is (numerically) greater than $\Delta \mathrm{S}_{\text {sys }}$ OR $\Delta \mathrm{S}_{\text {surr }}$ "outweighs" $\Delta \mathrm{S}_{\text {sys }}$ OR $\Delta \mathrm{S}_{\text {surr }}$ sufficiently large so that $\Delta \mathrm{S}_{\text {total }}$ is positive	Just "reaction is exothermic" $\Delta \mathrm{S}_{\text {total }}$ is negative (0) for third scoring point	3

