Question Number	Acceptable Answers	Reject	Mark
1 (a)	$\Delta S_{system} = (3x2x65.3 + 197.6) - (186.2 + 188.7)$ Correct data for CH ₄ and CO (186.2 and 197.6) (1)		2
	= (+) 214.5 / 215 (J mol ⁻¹ K ⁻¹) / (+) 0.2145 / 0.215 kJ (mol ⁻¹ K ⁻¹) (1)	214 0.214	
	Units must be shown if data has been converted to kJ		
	Full marks (2) for correct answer without working Ignore sf except 1		
	Answer of -214.5 scores (1)		
	Answer of +18.6 if entropy of H not doubled scores (1)		
	Answer of -46.7 if entropy of H_2 not tripled scores (1)		
	ALLOW TE in second mark for minor error in data e.g. writing 63.5 instead of 65.3. No TE if data used is not entropy of compounds.		

Question Number	Acceptable Answers	Reject	Mark
1 (b)	$(\Delta S_{surroundings}) = \frac{-\Delta H}{T}$ Expression or use of expression, $\frac{-206.1x(1000)}{298}$ (1) = -691.6 J (mol ⁻¹ K ⁻¹)/ -0.6916 kJ (mol ⁻¹ K ⁻¹) (1) Ignore sf except 1		2

Question Number	Acceptable Answers	Reject	Mark
1 (c)	$\Delta S_{\text{total}} = (214.5 + (-691.6)) = -477.1 \text{ (J mol}^{-1} \text{ K}^{-1}) / - 0.4771 \text{ (kJ mol}^{-1} \text{ K}^{-1}) \text{ (1)}$		2
	ALLOW TE for answer to (a) plus answer to (b). If 214.5 is added to -0.69 no TE unless -0.69 is specified to be in joules. Ignore sf except 1	Addition of value in J to specified value in kJ	
	Negative / less than zero (so not spontaneous) / would be positive if spontaneous. (1) ALLOW "feasible" for spontaneous.	Comments on kinetic stability	
	If answer to calculation is positive, accept comment that it would be expected to be negative if not spontaneous		

Question Number	Acceptable Answers	Reject	Mark
*1 (d) (i)	$K_{p} = \frac{(pH_{2})^{3}x(pCO)}{(pCH_{4})(pH_{2}O)}$ (1)	Square brackets	6
	4 Correct partial pressures (3)		
	CH ₄ H ₂ O CO H ₂		
	pp 0.25 0.25 0.375 1.125		
	ALLOW partial pressures as fractions		
	$K_{\rm p} = \frac{(1.125)^3 {\rm x} (0.375)}{(0.25)(0.25)} = 8.54 {\rm atm}^2$		
	value of K_p (1)		
	unit (1) (Stand alone mark)		
	Correct calculation without working scores the 5 calculation marks.		
	TE from K_p expression if inverted lgnore sf except 1	TE for K_p expression with addition, not multiplication	
	If any partial pressures are incorrect: Calculating total number of moles (6.4) (1)		
	Calculating mole fractions (0.125, 0.125, 0.1875, 0.5625 if total number of moles is correct) (1)		
	Multiplying mole fractions by total pressure (x 2 atm) (1)		
	value of K_p (1)		
	unit (1) (stand alone mark)		
	ALLOW TE in value of K_p only from incorrect partial pressures, not using values in question as not using equilibrium moles		
	If treated as a K_c calculation following K_p expression : K_p expression (1) units atm ² (1)		
	Max. mark (2)		

Question Number	Acceptable Answers	Reject	Mark
1 (d) (ii)	$\Delta S_{\text{total}} = (8.31 \text{ ln } 8.54) = (+)17.8 \text{ (J mol}^{-1} \text{ K}^{-1})$ Accept any value that rounds to 17.8 TE from value in (i) K_{p} value of 87.48 (obtained by treating calculation in (i) as K_{c}) gives $\Delta S_{\text{total}} = 37.16 \text{ /}$ 37.12		1

Question Number	Acceptable Answers	Reject	Mark
1 (d) (iii)	17.8 = 225 - $\frac{206.1 \times 1000}{T}$ (1) T = $(\frac{206.1 \times 1000}{207.2})$ = 995 / 990 (K) (1) Correct answer with no working shown scores 2 Correct method with wrong answer or missing 10 ³ scores 1 TE from (ii) K_p value of 87.48 gives T = 1097 OR If ΔS_{total} is taken as zero 0 = 225 - $\frac{206.1 \times 1000}{T}$ (1) T = 916K (1) K_p value of 87.48 gives T = 916 Ignore sf except 1		2

Question	Acceptable Answers	Reject	Mark
Number			
*1 (e)	$\Delta S_{surroundings} / \frac{-\Delta H}{T}$ becomes less negative making ΔS_{total} more positive (as T increases)	Le Chatelier statements without reference to entropy changes	2
	OR $\Delta S_{surroundings} / \frac{-\Delta H}{T}$ becomes less negative making ΔS_{total} greater (as T increases)		
	OR (magnitude of) $\Delta S_{surroundings}$ becomes less / lower making ΔS_{total} more positive / greater (as T increases) (1)		
	Because ΔS_{total} increases equilibrium constant increases (1)		
	OR		
	value of ΔS_{total} at new temperature is more than at 298K (1) (must be clear that the two ΔS_{total} values at the different temperatures have been considered)	Just 'as temperature increases ΔS_{total} increases'	
	Because ΔS_{total} increases equilibrium constant increases (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a)	ΔS°_{total} is positive / $\Delta S^{\circ}_{total} > 0$ with or without superscript <i>NOTE</i> : This mark may be awarded from answer to Q25(b)(v) Accept ΔG° is negative	Just "the entropy is positive"	1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	(+)27.3 and (+)87.4 (J mol ⁻¹ K ⁻¹)		1
	IGNORE incorrect units		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	$\Delta S^{\circ}_{sys} = (2x87.4) - \{(4x27.3 + (3x205.0))\} $ (1)		2
	$= -549.4 / -549 (J \text{ mol}^{-1} \text{ K}^{-1}) $ (1)		
	Correct answer with or without correct units (2)		
	IGNORE any wrong units		
	Accept TE from (b)(i)		
	NOTE: +549/+549.4 scores (1)		
	Check working		
	NOTE: 1 st mark: for x2, x4 and x3 2 nd mark: for (products - reactants), with correct arithmetic		

Question Number	Acceptable Answers		Reject	Mark
2 (b)(iii)	$\Delta S_{surr} = -\frac{\Delta H}{T}$ $= -(-1648 \times 10^{3}) \div 298(.15) \text{ (J mol}^{-1} \text{ K}^{-1})$ $= (+) 5530 \text{ (J mol}^{-1} \text{ K}^{-1})$ OR $= (+) 5.53 \text{ kJ mol}^{-1} \text{ K}^{-1}$ <i>NOTES:</i> • Correct answer, with or without working, scores • If 5530 (J mol}^{-1} \text{ K}^{-1}) given, IGNORE a subsequent incorrect attempts to convert it to a value in kJ mol}^{-1} \text{ K}^{-1} <i>IGNORE</i> s.f. except one s.f.	(1) (1) any	Just (+)5.53 with no units OR (+)5.53 kJ mol ⁻¹	1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iv)	ΔS _{total} = (-549.4) +(+5530) = +4980.6/+ 4981 J mol ⁻¹ K ⁻¹ OR +4.981 kJ mol ⁻¹ K ⁻¹ (1) for value (1) for correct sign and units <i>IGNORE</i> s.f. except one s.f. Accept TE from (b)(ii) and (b)(iii)	Just the formula: ΔS _{total} = ΔS ^o _{sys} + ΔS _{surr}	2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(v)	$(\Delta S_{system} is negative):$		3
	as loss of disorder as gas $ ightarrow$ solid		
	OR		
	more order as gas \rightarrow solid		
	OR		
	as decrease in entropy as gas \rightarrow solid		
	(1)		
	$(\Delta S_{surr} \text{ is positive}):$		
	(heat) energy released (increases kinetic energy and hence movement of the surrounding molecules)	Just "reaction is exothermic"	
	(1)		
	ΔS_{total} is positive because ΔS_{surr} is (numerically) greater than ΔS_{sys} OR ΔS_{surr} "outweighs" ΔS_{sys} OR	ΔS_{total} is negative (0) for third scoring point	
	ΔS_{surr} sufficiently large so that ΔS_{total} is positive (1)		