1. (a) (i) $2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{CaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
formulae correct (1) balance (1). Ignore any state symbols.
The balance mark is not stand-alone.
(ii) steam / fizzing sound / crumbles (1)
solid swells up / milky liquid produced / comment about sparingly soluble substance (1)
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ (1) ignore any state symbols 3
(iii) less (1)
(iv) (Cat)ion size increases down the Group / charge density decreases (1) (not atom size)

The polarizing power of the cation decreases down the Group (1).
The less polarized the anion is by the cation the more difficult the nitrate is to decompose (1).

Polarisation mark could come from 'the less the electron cloud is distorted...' or trend in cation size (1)
comparison of the lattice energies of the nitrate and the oxide (1) balance in favour of oxide at top of group and the nitrate at the bottom (1)
(b) (i) same number of particles in a smaller volume / gas density increased (1) 1
(ii) comment related to the number of molecules on each side to explain a shift to l.h.s. (1) (not just ‘due to Le Chatelier...')
so at higher pressure equilibrium moves to favour $\mathrm{N}_{2} \mathrm{O}_{4}$ (1)
2
(iii) $K_{\mathrm{p}}=p\left(\mathrm{NO}_{2}\right)^{2}$
$p\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)$
There must be some symbolism for pressure, and no []
(iv) $\left(K_{\mathrm{p}}=p\left(\mathrm{NO}_{2}\right)^{2}=48\right)$
$p\left(\mathrm{NO}_{2}\right)^{2}=48 \times 0.15=7.2$ (1)
$p\left(\mathrm{NO}_{2}\right)=2.7$ (1) atm (1) accept $2.683 / 2.68 / 2.7$
Answer and units conditional on (iii).
2. (a) (i) $\mathrm{HCl}: \mathrm{pH}=1.13$
$\therefore\left[\mathrm{H}^{+}\right]=0.074 \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore[\mathrm{HCl}]=0.074 \mathrm{~mol} \mathrm{dm}^{-3}$ [0.074 to 0.07413$]$
(ii) $\mathrm{HOCl}: \mathrm{pH}=4.23$
$\therefore\left[\mathrm{H}^{+}\right]=5.89 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right](\mathbf{1})$
[HOCl]
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OCl}^{-}\right](\mathbf{1})$ or implied later in calculation
$[\mathrm{HOCl}]=\left[\mathrm{H}^{+}\right]^{2} / \mathrm{K}_{\mathrm{a}}=0.0932 \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
(b) (i) $\left[\mathrm{H}^{+}\right]=0.10 / 0.1047 / 0.105$ (1)
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}(\mathbf{1}) \quad \rightarrow$ or \rightleftharpoons
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3}{ }^{+} \mathrm{O}+\mathrm{HSO}_{4}^{-}$ignore state symbols
$\mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}(\mathbf{1})$ Must be \rightleftharpoons
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}$ ignore state symbols
(iii) second ionisation suppressed by the first ionisation (1)
(c) (i) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Cl}_{2}\right]^{2} \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{HCl}]^{4} \times\left[\mathrm{O}_{2}\right]}$
(ii) $4 \mathrm{HCl}+\mathrm{O}_{2} 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\begin{array}{llll}\text { equilibrium mols } & 0.20 & 0.050 \text { (1) } 0.30 \text { and } 0.30 \text { (1) } \\ {[] \text { eq } \div 10(\mathbf{1})} & 0.020 & 0.0050 & 0.030\end{array}$
$\left[\begin{array}{lllll}{[\mathrm{eq} \div 10(\mathbf{1})} & 0.020 & 0.0050 & 0.030 & 0.030\end{array}\right.$
$K_{c}={ }^{[0.030]^{2} \times[0.030]^{2}}=1010$ or 1012 or 1013 or 1012.5 $[0.020]^{4} \times[0.005] \quad\left(\mathrm{mol}^{-1} \mathrm{dm}^{3}\right)(\mathbf{1})$
(d) (i) As reaction (left to right) is exothermic (1)

Decrease in temperature drives equilibrium to from left to right (1)
(ii) As more (gas) molecules on the left (1), equilibrium is driven from left to right (1)
(iii) A catalyst has no effect (1)

As it only alters the rate of the reaction not the position of equilibrium / it alters the rate of the forward and reverse reactions equally (1)
3. (a) Still reacting / rate of forward reaction and backward reaction equal / implication that forward and backward reactions are still taking place (1)
But concentrations constant / no macroscopic changes (1)
(b) Temp (Increases) Left / to $\mathrm{SO}_{2} /$ to endothermic / lower yield (1)

Press Increases/faster (1) Right to $\mathrm{SO}_{3} /$ to smaller number of molecules (1)
(c) (i) Increases rate / or suitable comment on rate (1)

Moves position of equilibrium to endothermic side / or suitable comment on equilibrium such as reasonable yield / less SO_{3} (1)
Either compromise in which the rate is more important than the position of equilibrium
or
optimum temperature for catalyst to operate
or
valid economic argument (1)
(ii) Increases rate / more SO_{3} / only needs small pressure to ensure gas passes through plant / high or reasonable yield obtained at 1 atms or at low pressure anyway (1) and
references to economic cost against yield benefit
e.g increase in pressure would increase yield of product but the increase in yield would not offset the cost of increasing the pressure (1)
(iii) Catalyst speeds up reaction (1) 1
(d) Vanadium (V) oxide / vanadium pentoxide / $\mathrm{V}_{2} \mathrm{O}_{5}(\mathbf{1}) 1$
(e) Any one use
production of fertilizers, detergents, dyes, paints, pharmaceuticals (in) car batteries, pickling metal
4. (a) only partially dissociated / ionised / not fully dissociated (1) into H^{+}ions / $\mathrm{H}_{3}{ }^{+} \mathrm{O} /$ proton donor (1)
(b) $\quad \mathrm{Ka}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ (1)
(c) (i) 9.0 to 9.4 (1)
(ii) 9.0 to 9.4 (1)
or same answer as (c)(ii)
(iii) $\mathrm{pK}_{\mathrm{a}}=5.6$ (1)
$K_{a}=2.5 \times 10^{-6} \mathbf{(1)}$ consequential
(d) (i) (a solution that) resists change in $\mathrm{pH} /$ retains an almost constant pH (1) on addition of small quantities of acid or alkali (1)
(ii) 5.2 to 5.8 (1)
5.5 or 5.6 (1) or answer from (c) (iii) based on misreading scale of graph, eg. 4.8
(e) Phenolphthalein (1)
indictor changes colour between pH 7 and 10 this is vertical part of graph (1) methyl orange would change in acid / give pH between pH 4 and pH 6 (1) n. b. must be $+v e$ statement about methyl orange
(f) exothermic reaction / heat (energy) released during reaction (1) HCl is strong acid fully ionised (1)
this is weak acid so some energy used for dissociation (1)
(g) (i) $\mathrm{pH}=-\log (10)\left[\mathrm{H}^{+}\right]$or in words
(ii) $1.8 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{1}$ (1)

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{ } 1.8 \times 10^{-5}=4.24 \times 10^{-3} \mathbf{(1)} \\
\mathrm{pH} & =-\log \left(4.24 \times 10^{-3}\right) \\
& =2.37 / 2.4(\mathbf{1}) 2 \text { to } 4 \text { sig. figs. }
\end{aligned}
$$

5. (a)
(i) $\quad K \mathrm{p}=\frac{\mathrm{P}_{\mathrm{SO} 2}^{2} \times \mathrm{P}_{\mathrm{O} 2}}{\mathrm{P}_{\mathrm{SO} 3}^{2}}$
(1)
[] no mark
() OK
(ii)

$$
\begin{array}{ccc}
2 \mathrm{SO}_{3} & \rightarrow & 2 \mathrm{SO}_{2} \\
2 & & 0 \\
0 & 0 \\
0.5 & & 1.5
\end{array}
$$

$\begin{array}{cccc}\text { Mols at start } & 2 & 0 & 0\end{array}$ mols at equ
(1)

Mark by process

1 mark for working out mole fraction
1 mark for $\times 10$
1 mark for correct substitution in K_{p} and answer
1 mark for unit
i.e. $\quad \mathrm{P}_{\mathrm{SO} 2}=\frac{1.5}{2.75} \times 10=5.46$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{O} 2}=\frac{0.7}{2.75} \times 10=2.73 \\
& \mathrm{P}_{\mathrm{SO} 3}=\frac{0.5}{2.75} \times 10=1.83
\end{aligned}
$$

n.b. could show mole fraction for all 3 and then $\times 10$ later to give partial pressure.
$\mathrm{Kp}=(5.46)^{2} \times(2.73) /(1.83)^{2}=24.5(\mathbf{1})$ atm (1)
(b) (i) No effect (1) 1
(ii) No effect (1) 1
6. (a) (i) fraction of the total pressure generated by a gas or or
pressure gas would generate if it alone occupied the volume
or
$\mathrm{P}_{\text {total }} \times$ mol fraction (1)
(ii) $\quad \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}(\mathrm{CO}) \times \mathrm{p}\left(\mathrm{H}_{2}\right)^{3}}{\mathrm{p}\left(\mathrm{CH}_{4}\right) \times \mathrm{p}\left(\mathrm{H}_{2} \mathrm{O}\right)}$ (1) \quad not []
(iii) Increase in total pressure will result in less product molecules in the equilibrium mixture / equilibrium moves to left (1)
because more molecules on product side of the equilibrium than on left (1)
(b) (i) No change (1) 1
(ii) K_{P} increase (1)
(iii) No change (1)
(c) (i) $\quad \mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{p}\left(\mathrm{CH}_{4}\right)}$ (1) $\quad 1$
(ii) $9.87 \times 10^{-3} \mathrm{kPa}^{-1} / 9.87 \times 10^{-6} \mathrm{~Pa}^{-1}$ consequential on (i) (1) Allow 3-5 sig fig
(iii) equilibrium has moved left in favour of gas (1) exothermic going left to right/in the forward direction / as written (1) Stand alone
(iv) Answer yes or no with some sensible justification (1) e.g. No the costs would not justify the amount produced 1
7. (a) Few molecules dissociate (into protons) / partially dissociated / ionised (1)

Not fully dissociated scores zero
(b) Maintains an almost constant $\mathrm{pH} /$ resists change in pH (1) with the addition of small amounts of acid or alkali (1)
(c)

starting $\mathrm{pH}(\mathbf{1})$ at 2.8
endpoint (1) vertical between 6 and 11 including 7-10
vertical (1) at $25 \mathrm{~cm}^{3}$
general shape (1) finish above 12
(d) Almost horizontal area marked on graph (1)
(e) (i) $\quad K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ (1)
or
$K_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}(\mathbf{1})$
(ii) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ at half way to neutralisation point $=12.5 \mathrm{~cm}^{3}$ (1) This could be shown on the graph because $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ when $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ (1) 2
8. (a) The marks are for:

- writing the expression for K
- substituting correctly
- calculating $\mathrm{p}\left(\mathrm{SO}_{3}\right)$
- correct generation of the ratio
- calculation of the ratio to give answer which rounds to 95 t
$\mathrm{Kp}=\mathrm{pSO}_{3}{ }^{2} / \mathrm{pSO}_{2}^{2} \times \mathrm{pO}_{2}\left(=3.00 \times 10^{4}\right)(\mathbf{1})$
$3.00 \times 10^{4}=\mathrm{pSO}_{3}{ }^{2} / 0.1 \times 0.1 \times 0.5$ (1) if no expression for Kp is
given this correct substitution can score 2 marks
$\mathrm{pSO}_{3}{ }^{2}=150$
$\mathrm{pSO}_{3}=12.25$ (1)
Ratio of $\mathrm{SO}_{3}=\frac{12.25 \times 100 \%}{(12.25+0.1+0.5)}(\mathbf{1})=95 \%(\mathbf{1})$
(b) (i) The marks are for
- Recognizing the existence of hydrogen bonds (between molecules) (1)
- That each molecule can form more than one hydrogen bond because of the two OH (and two $\mathrm{S}=\mathrm{O}$ groups) / or a description of hydrogen bonds in this case / or a diagram showing the hydrogen bonds (1)
- That hydrogen bonds make for strong intermolecular forces (and hence high boiling temperature) which requires higher energy to break / separate molecules (1)
(ii) If water is added to acid heat generated boils and liquid spits out (1) if acid added to water the large volume of water absorbs the heat generated (and the mixture does not boil) (1)
(c) (i) $\mathrm{pH}=-\log _{10}(0.200)=0.70$ (1)
allow 0.7 or 0.699
(ii) realising that the first ionisation / dissociation of sulphuric and that of HCl are both complete (1)
that the second ionisation of sulphuric is suppressed by the H^{+}from the first (1)
little contribution from 2nd ionisation so reduces the pH very little / increases the $\left[\mathrm{H}^{+}\right]$very little (1)
(d) (i) Lead equations 1 mark

$$
\mathrm{Pb}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}(\mathbf{1})
$$

or
$\mathrm{Pb}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{e}^{-}$
Lead(IV) oxide equations 2 marks
$\mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+{ }_{2} \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO}_{4}+{ }_{2} \mathrm{H}_{2} \mathrm{O}$
or
$\mathrm{PbO}_{2}+\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+$
Species (1) balancing (1)
(ii) $\mathrm{PbO}_{2}+\mathrm{Pb}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}(1) \quad 1$
9. (a) (i) $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] / \mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]$(1)
(ii) $\mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$or $\mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}_{3}{ }^{+} \mathrm{O}\right]\left[\mathrm{OH}^{-}\right](1) \quad 1$
(b) fully ionised / fully dissociated / almost completely ionised (1)
(c) (i) $\quad 0.70($ or 0.699$)(1)$
(ii) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{W}} /\left[\mathrm{OH}^{-}\right]=1.25 \times 10^{-14}$ (1)
$\mathrm{pH}=13.9$ or 13.90 (1)
(d) (i) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ (1)
allow $\left[\mathrm{H}_{3}{ }^{+} \mathrm{O}\right]$
(ii) $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \times[\mathrm{HA}]\right)(\mathbf{1})=0.00474$ (1)
$\mathrm{pH}=2.32 / 2.33$ (1)
(e) $\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$(1)
$\left[\mathrm{H}^{+}\right]=\left(5.62 \times 10^{-5} \times 0.3\right) / 0.6=0.0000281 / 2.81 \times 10^{-5} \mathbf{(1)}$ $\mathrm{pH}=4.55$ (1)
Or
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$=-\log _{10}\left(5.62 \times 10^{-5}\right)+\log _{10} \frac{[0.600]}{[0.300]}=4.55$
If initial error in statement of $\left[\mathrm{H}^{+}\right]$or Henderson equation max 1
10. (a) (i) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{SO}_{3}\right]^{2} /\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$ (1)
(ii) $\begin{array}{lll}\frac{0.2}{30} & \frac{0.1}{60} & \frac{1.8}{60}\end{array}$ $=3.33 \times 10^{-3} \quad 1.67 \times 10^{-3} \quad 0.03$ (1) $\mathrm{K}_{\mathrm{c}}=\frac{(0.03)^{2}}{\left(3.33 \times 10^{-3}\right)^{2} \times 1.67 \times 10^{-3}}=4860$ or 4.86×10^{-4} (1) $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ (1)
(b) (i) K_{c} decreases (1)

1
(ii) shifts to left / in reverse (1)
(c) (i) no effect (1)
(ii) no effect (1)
(d) (i) $\mathrm{K}_{\mathrm{p}}=\mathrm{pSO}_{3}^{2} / \mathrm{pSO}_{2}^{2} \times \mathrm{pO}_{2}$ (1) penalise square brackets
(ii) Total number of moles (1) consequential on a (ii) $\mathrm{SO}_{2}=0.0952(4) ; \mathrm{O}_{2}=0.0476$ (2); $\mathrm{SO}_{3}=0.857$ (1) (1)
(iii) Partial pressures: $\mathrm{SO}_{2}=0.190$ (5) atm; $\mathrm{O}_{2}=0.0952$ (4) atm;
(iv) $1.714^{2} / 0.1905^{2} \times 0.09524=850(\mathbf{1})$ $\mathrm{atm}^{-1}(\mathbf{1})$
11. (a) (i) Gases have much higher entropies than solids as there are many more ways of arranging the entities / less ordered / more random(ness)
OR reverse argument (1)
ZnCO_{3} has more atoms/is more complex than $\mathrm{ZnO}(\mathbf{1})$
(ii) $\quad \Delta \mathrm{S}_{\text {system }}^{\ominus}=(+43.6)+(+213.6)-(+82.4)$

$$
=+174.8 / 175 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

method (1)
answer, sign and units (1)
Correct answer, sign and units with no working (2)
(b)

\[

\]

ONLY accept 3 or 4 SF
IF correct answer, sign and units with no working (1)
(c) (i)

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {total }}^{\ominus}=+174.8-1558.7 \\
& =-1384 /-1380 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-} \\
& 1 \\
& I F+174.8-1560 \\
& =-1385(.2) \\
& =-1385 / 1390 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& I F+174.8-1559 \\
& =-1384 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

ONLY penalise incorrect units OR no units in (a)(ii), (b) and (c)(i) once
(ii) Natural direction is right to left/reverse as $\Delta \mathrm{S}_{\text {total }}^{\ominus} /$ total entropy change
is negative / less than zero.
MUST be consistent with (i)
(d) (i) $K_{\mathrm{p}}=p \mathrm{CO}_{2}($ (g) eqm)
(ii) Increase temperature / reduce pressure (1)

Decreases $\Delta \mathrm{S}_{\text {surroundings }}$ (negative) and hence increases $\Delta \mathrm{S}_{\text {total }}^{\ominus} /$ Le Chatelier's principle applied (i.e increasing temperature, reducing pressure) (1) 2
12. (a) (i) Pairs up $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$
and $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{3} \mathrm{O}^{+}(\mathbf{1})$; correct identification of which is acid and which base (1)
(ii) $K_{\mathrm{a}}=\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]$ (1)
$\left[\mathrm{H}^{+}\right]$is acceptable.
(iii) $\quad\left[\mathrm{H}^{+}\right]=(\mathrm{Ka}[\mathrm{HA}])^{1 / 2}$ or $\sqrt{ } \mathrm{Ka}[\mathrm{HA}](1)=\left(1.3 \times 10^{-5} \times 0.10\right)^{1 / 2}$
$=1.14 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)} \mathrm{pH}=2.9$ or 2.94 , i.e. to 1 or 2 d.p. (1)
Consequential on the value of $[\mathrm{H}+$] provided the pH resulting is between 0 and 7 .
(iv) $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}(\mathbf{1})=1.14 \times 10^{-3}\left[\mathrm{OH}^{-}\right]$

Thus $\left[\mathrm{OH}^{-}\right]=10^{-14} \times 10^{-3} \mathbf{(1)}$
$=8.77$ (8.8) $\times 10^{-12} \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$ units needed (2 or 3 sf)
Consequential on the answer to (iii) for $\left[\mathrm{H}^{+}\right]$
Allow 8.71×10^{-12} if solved using $\mathrm{pH}+\mathrm{pOH}$ and $\mathrm{pH}=2.94$;
7.9×10^{-12} if solved using $\mathrm{pH}+\mathrm{pOH}$ and $\mathrm{pH}=2.9$.
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}$ (1)

Hydroxide ions make the solution alkaline (1) or propanoate ion deprotonates the water
or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH}$ (1)
Explanation then must comment that acid is weak/not fully ionised
(c) (i) Solution that maintains almost constant pH (1) for small addition of acid or alkali (1)
(ii) $\mathrm{pH}=\mathrm{pKa}+\lg [$ salt $] /[$ acid $]$ (1)
$=4.9+\operatorname{Ig}(0.05) /(0.025)(1)$ for dividing by 2
$=5.19$ or 5.2 (1).
If the Henderson equation is wrong but concs are divided by 2 then $1 / 3$ max.

Or
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Ka}[\text { acid }]}{[\text { salt }]}(1)$
$=\frac{1.30 \times 10^{-5} \times 0.025}{0.050}(1)$
$\mathrm{pH}=5.19$ or 5.2 (1)
If the concns are twice what they should be, ie. candidate does not spot the volume increase, then max (2). The pH is still 5.2, so care is needed.
13. (a) $\mathrm{pH}=-\operatorname{Ig}\left[\mathrm{H}^{+}(\mathrm{aq})\right]$

OR $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}} / 10^{-9.6}=10^{-9.6}$ (method) (1)
$=2.5(1) \times 10^{-10} \mathrm{~mol} \mathrm{dm}^{-3}$ (2)
(b) (i) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$
(ii) $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}$
$=\frac{1.0 \times 10^{-14}}{2.51 \times 10^{-10}}$
$=3.98 / 4(.0) \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
(iii) $\left.\left[\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})\right]=0.5 \times 3.98 \times 10^{-5}\right)$
$=1.99 / 2(.0) \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
(iv) $=1.99 / 2(.03) \times 10^{-5} \times 74$
$=0.00147\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ MUST be to 3 SF
(v) Due to reaction with carbon dioxide in the air / temperature differences 1
(c) (i) $\mathrm{pH}=3(.0)$ Penalise if more than $2 S F$
(ii) Amount of $\mathrm{Ca}(\mathrm{OH})_{2}=\frac{100 \times 1.99 \times 10^{-5}}{1000}$

$$
=1.99 \times 10^{-6} \mathrm{~mol}(\mathbf{1})
$$

$$
\therefore \text { Amount of } \mathrm{HCl}=\frac{2 \times 100 \times 1.99 \times 10^{-5}}{1000}
$$

$$
=3.98 \times 10^{-6} \mathrm{~mol}(\mathbf{1})
$$

\therefore Volume of $\mathrm{HCl}=\frac{1000 \times 2 \times 100 \times 1.99 \times 10^{-5}}{1000}$

$$
=4(.0) / 3.98 \mathrm{~cm}^{3} \text { OR } 4(.0) / 3.98 \times 10^{-3} \mathrm{dm}^{3}(\mathbf{1})
$$

(iii)

Vertical portion of the graph (between pH 7 and 4) at about $4 \mathrm{~cm}^{3}$ (1) Correct initial and finishing pH (9-10 and 3) and general shape (1)
(iv) Phenolphthalein changes colour outside pH range of end point/ pH range of phenolphthalein is too high.
14. (a) (i) NH_{3} base and $\mathrm{NH}_{4}{ }^{+}$acid (1)
$\mathrm{H}_{2} \mathrm{O}$ acid and OH^{-}base (1)
OR
linking (1)
acid and base correctly identified (1)
(ii) Starting pH of (just above) 11 (1)

Graph showing vertical line between pH 4 and 6
With vertical section $3-5$ units in length (1)
at a volume of HCl of $20 \mathrm{~cm}^{3}$ (1)

Final pH of between 1 and 2 (1)
(iii) Named indicator consequential on vertical part of their graph (1)

Because all of its range is within the vertical part of the graph / $\mathrm{p} K_{\text {ind }} \pm 1$ is within vertical part of graph / it changes colour completely/ stated colour change (MO: yellow - red; BB: blue yellow; PP: pink - colourless) within the pH of the vertical part of the graph (1)
(ii) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{NO}_{2}^{-}\right]$or $\left[\mathrm{H}^{+}\right]^{2}=K_{\mathrm{a}} \times\left[\mathrm{HNO}_{2}\right]$ (1)
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{a} \times 0.12\right)=0.00751 \mathrm{~mol} \mathrm{dm}^{-3}(\mathbf{1})$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.12 / 2.1$ (1)
ALLOW any correct conversion of $\left[\mathrm{H}^{+}\right]$into $p H$ provided the answer is less than 7
(iii) Moles $\mathrm{NaNO}_{2}=1.38 / 69=0.020$ (1)
$\left[\mathrm{NO}_{2}{ }^{-}\right]=0.020 / 0.10=0.20\left(\mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$
$\left[\mathrm{H}^{+}\right]=\frac{\left.K_{a} \text { [acid }\right]}{[\text { salt }]}=\frac{4.70 \times 10^{-4} \times 0.120}{0.20}=2.82 \times 10^{-4} \mathbf{(1)}$
$\mathrm{pH}=-\log 2.82 \times 10^{-4}=3.55 / 3.6 / 3.5(\mathbf{1})$
(iv) In a buffer both [acid] and [salt] must be large compared to the added H^{+}or OH^{-}ions (1) but in NaNO_{2} alone [HNO_{2}] is very small (1)
OR
to remove both H^{+}and OH^{-}there must be a large reservoir of both NO_{2}^{-}ions and HNO_{2} molecules (1)
which there are a solution of NaNO_{2} and HNO_{2} but not in NaNO alone (1)
15. (a) Pressure NOT partial pressure intensity or change of colour volume
)
) Any one)

1
(b) $\quad K_{\mathrm{c}}=\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]$

State symbols required
(c) $\mathrm{Mol} \mathrm{NO}_{2}$ at equilibrium $=0.0120 / 1.20 \times 10^{-2}$ (1)
$K_{\mathrm{C}}=(0.0120)^{2} \div(0.0310)$
$=4.6 / 4.65 \times 10^{-3} \mathbf{(1)} \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
(d) (i) Amount of NO_{2} reduced

1
(ii) No effect
(e) As K_{c} is bigger, more NO_{2} is produced so heat helps forward reaction / by Le Chatelier's principle reaction goes forward to use up heat / as temperature increases $\Delta \mathrm{S}_{\text {total }}$ must be more positive so $\Delta \mathrm{S}_{\text {surroundings }}$ ($=-\Delta \mathrm{H} / \mathrm{T}$ must be less negative
(f) Positive / + with some attempt at explanation (1)

1 mol / molecule gas $\rightarrow 2 \mathrm{~mol} /$ molecule gas / products more disordered than reactants (1)
(g) $\Delta \mathrm{S}_{\text {surroundings }}=-\frac{\Delta H}{T} \quad$ OR $\quad \frac{-\Delta H \times 1000}{T}$ 1
(h) $\Delta \mathrm{S}_{\text {total }}$ is positive as reaction occurs (1)

So $\Delta \mathrm{S}_{\text {system }}$ must be more positive than $\Delta \mathrm{S}_{\text {surroundings }}$ is negative (1)
16. (a) (i) $\mathrm{pH}=-\log _{(10)}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$(1)

OR $\left[\mathrm{H}^{+}\right]$instead of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$applied throughout 1
(ii) $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$greater than $1\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad 1$
(b) (i) $\quad K_{\mathrm{d}} .=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ (1)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.14 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
$\mathrm{pH}=2.9(4)(\mathbf{1})$
(ii) Start at the same pH as in (i) (1)

Graph showing vertical at $25 \mathrm{~cm}^{3}$ (1)
vertical section $3-5$ units in length with midpoint around pH 8 (1)
general shape correct including buffer zone and final pH not >13 (1) 4
(iii) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \quad 1$
17. (a) Pressure exerted by the gas if it alone occupied the same volume at the same temperature/mole fraction \times total pressure
(b) (i) $\quad K_{\mathrm{p}}=\frac{p\left(\mathrm{~N}_{2}\right) p\left(\mathrm{O}_{2}\right)}{p(\mathrm{NO})^{2}}$
(ii) Correct number of moles (1) Correct mole fractions (1)
Correct partial pressures (1)
2.45×10^{3} (1) ACCEPT 2-4 SF
(c) K_{p} increases (1)

Equilibrium moves to r.h.s. (1)
which is the exothermic direction (1)
(d) (i) $K_{\mathrm{p}}=p\left(\mathrm{Ni}(\mathrm{CO})_{4}\right) / p(\mathrm{CO})^{4} \quad 1$
(ii) High partial pressure with some reason (1)
so the pressure $\mathrm{Ni}(\mathrm{CO})_{4}$ increases to keep Kp constant. (1) 2
18. (a) (i) Methanol is the biggest/ most complex molecule / greatest M_{R} / most atoms/most electrons
(ii) $\Delta \mathrm{S}_{\text {system }}=239.7-197.6-2(130.6)$
(ii) $\begin{aligned} & \mathrm{S}_{\text {system }} \\ & =-219.1 /-219 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\end{aligned}$

Method (1)
answer + units (1)
2
(iii) yes as 3 molecules $\rightarrow 1$ OR yes as (2) gases \rightarrow a liquid 1
(iv) $\Delta \mathrm{S}_{\text {surr }}=-\Delta \mathrm{H} / \mathrm{T}$ (stated or used) (1)
$=-(-129 / 298)=+0.433 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+433 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+432.9$ (1)
-1 for wrong units/ no units / more than 4 SF
-1 for wrong sign/ no sign
(v) $\Delta \mathrm{S}_{\text {total }}=-219.1+433=+213.9 /+213.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+214 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /$
$+0.214 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (1)
Positive so possible (1)
(b) (i) Temperature

Faster at $400^{\circ} \mathrm{C}$ (1)
even though yield is lower (1)
Pressure
Higher pressure improves yield of methanol (1)
Higher pressure increases rate (1)
Maximum 3 3
(ii) Not in same phase as reactants. ALLOW state instead of phase 1
(iii) $\begin{array}{ll}K_{\mathrm{p}}=p\left(\mathrm{CH}_{3} \mathrm{OH}\right) / p(\mathrm{CO}) \times p\left(\mathrm{H}_{2}\right)^{2} & 1\end{array}$
(iv) Partial pressure of methanol $=200-55-20=125 \mathrm{~atm}$ (1)
$K_{\mathrm{p}}=(125) / 55 \times 20^{2}$
$=5.68 \times 10^{-3} / 5.7 \times 10^{-3} \mathrm{~atm}^{-2}(\mathbf{1})$
(c) (i) Number of molecules / fraction of molecules with energy $\geq E_{\mathrm{A}} /$ number of molecules which have enough energy to react.
(ii) Vertical line / mark on axis to show value to the left of line $E_{\mathrm{A}} \quad 1$
19. (i) Weak acid is dissociated to a small extent/slightly dissociated/ ionised/few molecules dissociate
ALLOW partial dissociation
NOT 'not fully dissociated'.
(ii) $\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}\right]}$ OR $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$
(iv) starting pH 2.9 ALLOW starting in $2^{\text {nd }}$ or $3^{\text {rd }}$ boxes above pH 2 (1) consequential on (iii)
pH range vertical max 6 to 12 min $7-10$ (1)
Equivalence point at $25 \mathrm{~cm}^{3}$ (1)
General shape of curve and finish at pH between 12-13 (1) and end in $1^{\text {st }}$ three boxes above 12, extending to $40-50 \mathrm{~cm}^{3}$
If drawn wrong way round 2 max ie equivalence point (1) and vertical drop (1) marks can be awarded
(v) Thymol blue (1) - Consequential on (iv)
(Completely) changes colour within vertical portion/the working range of the indicator is within the vertical portion / $\mathrm{pK}_{\text {ind }} \pm 1$ in vertical position / $\mathrm{pK}_{\text {ind }}$ in centre of vertical position (1) 2
20. Penalise units only once in this question
(a) $(2 \times 192.3)-[191.6+(130.6 \times 3)](1)$ $=-198.8 / 199 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \mathbf{(1)}$
(b) $\frac{--92.2 \times 1000 /}{298} \frac{--92.2 /}{298}-\Delta \mathrm{H} / \mathrm{T}_{\mathrm{T}}(\mathbf{1})$

$$
=+309(.4) \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+0.309(4) \mathrm{kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(\mathbf{1})
$$

(c) (i) $-198.8+309=+110 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(3 \mathrm{SF})$

OR $-198.8+309.4=+111 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (3 SF)
[Do not penalise missing + sign if penalised already in (b)] NOT 4SF. Penatise SF only once on paper
(ii) Yes, as $\Delta \mathrm{S}_{\text {total }}$ is positive / total entropy change
(d) (i) Higher T makes $\Delta \mathrm{S}_{\text {surroundings }}$ decrease (so $\Delta \mathrm{S}_{\text {total }}$ is less positive)
(ii) Cost (of energy) to provide compression/ cost of equipment to withstand high $\mathrm{P} /$ maintenance costs.
NOT safety considerations alone
(iii) Different phase/state (to the reactants) 1
21. (a) (i) $K_{\mathrm{P}}=\mathrm{p}\left(\mathrm{CO}_{2}\right)$ allow without brackets, IGNORE p []
(ii) 1.48 (atm)

Penalise wrong unit
Answer is consequential on (a) (i) e.g. $\frac{1}{1.48}$ must have atm^{-1}
(b) (i) $\quad K_{\mathrm{p}}=\frac{\mathrm{p}\left(\mathrm{Cl}_{2}\right) \times \mathrm{p}(\mathrm{NO})^{2}}{(\mathrm{p}(\mathrm{NOCl}))^{2}}$ allow without brackets, penalise []
(ii)

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{0.495 \mathrm{~atm} \times(0.991 \mathrm{~atm})^{2}}{(3.51 \mathrm{~atm})^{2}}(\mathbf{1}) \\
& =0.0395 / 0.0394 \mathrm{~atm}(\mathbf{1})
\end{aligned}
$$

range of answers $0.0408 / 0.041 \rightarrow 0.039 / 0.0392$ NOT 0.04
ACCEPT ≥ 2 S. F
Correct answer plus some recognisable working (5)
Marks are for processes

- Equilibrium moles
- Dividing by total moles
- Multiplying by total pressure
- Substituting equilibrium values into expression for K_{P}

Calculating the value of K_{P} with correct consequential unit.
(iii) As the reaction is endothermic - stand alone (1)
the value of K_{P} will increase (as the temperature is increased) - (1)
consequential on $1^{\text {st }}$ answer (if exothermic (0) then K_{P} decreases (1)) For effect on K_{P} mark, must have addressed whether reaction is endothermic or exothermic
(iv) Because (as the value of K_{P} goes up), the value of $\mathrm{pCl}_{2} \times(\mathrm{pNO})^{2} /(\mathrm{pNOCl})^{2}$ (the quotient) must also go up (1) and so the position of equilibrium moves to the right - stand alone (1)

But mark consequentially on change in K in (iii)
If "position of equilibrium moves to right so K_{p} increases" (max 1) 2 IGNORE references to Le Chatelier's Principle
22. (a) $\mathrm{CH}_{3} \mathrm{COOH}$ labelled as base and linked to $\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}$labelled (conjugate) acid (1)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ labelled acid and linked to HSO_{4}^{-}labelled (conjugate) base (1) If acids and bases correct but not clearly or correctly linked 1 (out of 2) Just link but no identification of acids and bases (0)
(b) (i) (pH) more than $7 / 8-9$ (1)

Indicator: phenolphthalein ALLOW thymolphthalein OR thymol blue (mark consequentially on pH) (1)
Mark consequentially on pH but if pH 7 do not allow either methyl orange or phenolphthalein

QWC*(ii) As $\mathrm{OH}^{-} /$base removes H^{+}ions / $\Delta \mathrm{H}_{\text {neut }}$ is per mole of $\mathrm{H}_{2} \mathrm{O}$ produced / (1)
$\mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}$
the equilibrium shifts to the right (1)
and so all the ethanoic acid reacts (not just 1\% of it) (1)
OR
Endothermic (OH) bond breaking (1)
is compensated for (1)
by exothermic hydration of ions (1)
OR
$\Delta \mathrm{H}$ for $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}=+2 \mathrm{~kJ} \mathrm{~mol}^{-1} /$ almost zero $/$ very small (1)
$\therefore \Delta \mathrm{H}_{\text {neut }}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=+2+\Delta \mathrm{H}_{\text {neut }}[\mathrm{HCl}](1)$
\approx the same (for both acids) (1)
OR
$\Delta \mathrm{H}_{\text {neut }}$ is per mole of $\mathrm{H}_{2} \mathrm{O}$ produced (1)
(heat) energy required for full dissociation (of weak acid) (1)
so $\Delta H_{\text {neut }}$ slightly less exothermic (for weak acid) (1)
(iii) $\left[\mathrm{H}^{+}\right]^{2}=K_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=1.74 \times 10^{-5} \times 0.140=2.44 \times 10^{-6}$
$\left[\mathrm{H}^{+}\right]=0.00156\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
$\mathrm{pH}=2.81$ consequential on $\left[\mathrm{H}^{+}\right]$but not $\mathrm{pH}>7$ (1)
АССЕРТ 2.80/2.8 (answers to 1 or 2 dp)
The assumptions are two from:
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$- this mark can be earned from working / negligible $\left[\mathrm{H}^{+}\right]$from ionisation of water (1)
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.140-\left[\mathrm{H}^{+}\right] \approx 0.140\left(\mathrm{~mol} \mathrm{dm}{ }^{-3}\right) /$ ionisation of acid negligible (1)
solution at $25^{\circ} \mathrm{C}$ (1) max 2
(iv) $1.74 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right][\text {salt }]}{[\text { acid }]}$
$\left[\mathrm{H}^{+}\right]=1.74 \times 10^{-5} \times \frac{0.070}{0.100}=1.22 \times 10^{-5} \mathbf{(1)}$
$\mathrm{pH}=4.91 / 4.9 / 4.92$ NOT 5
Max 2 if 0.140 / 0.200 is used (1)

3
23. (a) (i) $+313.4-4 \times 197.6$ - 29.9 (1) Absence of $4 \times$ (0)
$=-506.9 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ OR $-507 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ OR answer in $\mathrm{kJ}(\mathbf{1})$ NOT - 510 ie 2 SF

Missing or wrong units ie answer does not match units 1 max
(ii) Negative as expected because only 1 mole of gas on the RHS but 4 moles of gas on the LHS
Mark can be awarded if answer based on moles only rather than states [5 moles $\rightarrow 1$ mole]
(iii) $\Delta S^{\ominus}{ }_{\text {surroundings }}=-\Delta \mathrm{H} / \mathrm{T}$ (1) For equation or use of equation

$$
\text { = } 191000 / 323
$$

$$
=(+) 591 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \mathbf{(1)} O R \text { answer in } \mathrm{kJ}
$$

ALLOW (+) $591.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /(+) 590 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ ALLOW 2, 3 or 4 SF

+ sign not needed provided there is evidence in calculation to show positive
In (i) and (ii) missing units is penalised once UNLESS a different unit error is made - hence penalise twice)
(iv) $\Delta S^{\ominus}{ }_{\text {total }}$ is positive/($+84 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$) so reaction should go forwards ALLOW TE from (a)(i)
(b) (i) $\quad K_{\mathrm{p}}=\frac{p \mathrm{Ni}(\mathrm{CO})_{4}}{p c o^{4}}$ if square brackets [] are used (0)
(ii) $\mathrm{Ni}(\mathrm{CO})_{4}$ moles at eq 0.25 (1)
total number of moles $=99.25$

$$
\mathrm{P}_{\mathrm{Ni}(\mathrm{CO}) 4}=\frac{0.25}{99.25} \times 1=(0.00252) \mathrm{P}_{\mathrm{CO}}=\frac{99}{99.25}=(0.9975)(\mathbf{1})
$$

$2^{\text {nd }}$ mark must be to at least 3 SF or working must be shown ie some evidence that \div their total number of moles

$$
\begin{aligned}
\mathrm{K}_{\mathrm{p}} & =0.25 / 99.25 /(99 / 99.25)^{4} \\
& =2.54 \times 10^{-3} \mathbf{(1)} \mathrm{~atm}^{-3} \mathbf{(1)}
\end{aligned}
$$

Units marked independently
ALLOW 2.5×10^{-3}
Many have total number of moles as 100 even when it is not ALLOW TE for 2nd and $3^{\text {rd }}$ mark if it should be 100 or just TE for third mark if it shouldn't be 100 from their working $\left[K p=2.6\right.$ or $\left.2.60 \times 10^{-3}\right] \quad 4$
(iii) Increasing the pressure/ concentration of CO would force the reaction to the RHS with the smallest number of gaseous molecules (1)

NOT pressure with rate
Reduce the temperature so that the reaction goes in the exothermic direction / increase the temperature to increase rate (1)
Do not allow equilibrium to be reached by passing the CO over the nickel/recovering the product formed (1)
Use a catalyst to increase rate / increase the surface area of the nickel to increase number of collisions (1)
(c) The reaction can be reversed by increasing the temperature (1)
as $\Delta S^{\ominus}{ }_{\text {surroundings }}$ will become less positive/more negative as the temperature is increased (and $\Delta \mathrm{S}_{\text {system }}$ will remain almost unchanged) so $\Delta \mathrm{S}_{\text {total }}$ becomes negative for the forward reaction (1)
24. (a) starts at 2.2 (1)
vertical section at $40 \mathrm{~cm}^{3}$ of sodium hydroxide (1)
vertical section centred between pH 8-9 and between 2 to 3 squares high (1)
shape to include initial jump and finish between $\mathrm{pH}=12-13$ (1)
If curve drawn back to front, only $2^{\text {nd }}$ and $3^{\text {rd }}$ marks available
(b) (i) maintains nearly constant $\mathrm{pH} /$ resists change in pH (1) on adding small amounts of acid or alkali (1)
(ii) $\left[\mathrm{H}^{+}\right]=\frac{\text { Ka[acid }]}{[\text { salt }]} \quad$ OR $\quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\lg \frac{[\text { acid }]}{[\text { salt }]}$
$\left[\mathrm{H}^{+}\right]=1.78 \times 10^{-4} \times \frac{0.25}{0.125}$
$\left[\mathrm{H}^{+}\right]=3.56 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{pH}=3.4(5)(\mathbf{1})$
IGNORE no. of decimal places but penalise $\mathrm{pH}=3$
(iii) acid partially ionised and salt fully ionised $O R$ equations (1)
$\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$ (1)
ALLOW H ${ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ followed by more dissociation of HA
$\mathrm{A}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HA}(\mathbf{1})$
[HA] and [A^{-}] are large (relative to H^{+}and OH^{-}added) / large reserves of undissociated acid and salt (and so the values of [HA] and $\left[\mathrm{A}^{-}\right]$do not change significantly) (1)

NOTE: If no equations given for effect of adding OH^{-}and H^{+}, correct explanation can score (1) out of these two marks.
25. (a) (i) Negative with some sensible explanation eg fewer moles of product (1)

3 moles of gases going to 2 moles of gases (1)
2
MUST mention gases or no changes in state
(ii) Positive with some explanation eg exothermic so surroundings gain entropy (1)
$\Delta S_{\text {surroundings }}=-\frac{\Delta H}{\mathrm{~T}} \quad[$ OR given in words]
OR
$\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}$ [OR given in words]
as reaction goes, $\Delta S_{\text {total }}$ must be positive therefore $\Delta S_{\text {surroundings }}$ must be positive

OR
Surroundings gain energy so more ways of arranging energy (1)
(b) (i) $\quad(\mathrm{Kp})=\frac{\mathrm{P}_{\mathrm{NO}_{2}}{ }^{2}}{\mathrm{P}_{\mathrm{NO}^{2}} \times \mathrm{P}_{\mathrm{O}_{2}}}$

Check that it is not a "+" on denominator.
ALLOW () but NOT [] eg ALLOW $\left(\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}\right)^{2}$ etc
ALLOW $\left(\mathrm{pNO}_{2}\right)^{2}$
$\mathrm{Atm}^{-1} / \mathrm{Pa}^{-1} / \mathrm{kPa}^{-1} / \mathrm{m}^{2} \mathrm{~N}^{-1} \quad$ (1) $-2^{\text {nd }}$ mark dependent on $1^{\text {st }}$
ALLOW atms $^{-1} /$ atmospheres $^{-1}$
NOT atm^{-}etc
NOT Kpa ${ }^{-1}$
(ii) Temperature

A lower temperature is needed to get a better yield (and would cost less) because the reaction is exothermic (1)
but the lower temperature may slow the reaction down too much
OR reverse argument (1)
Pressure
A high pressure will increase yield as only two moles on the right compared to three on the left/less moles on the right hand side (1)

It will also increase the rate of the reaction (1)
Low pressure because of cost only gets mark if higher yield at higher pressure identified
To award any of the yield marks must say why
(c) (i) Must be a quantity that can be measured

Eg
The pressure could be measured (1)
as it will decrease as the reaction proceeds because there are only two/fewer moles on the right compared to three on the left (1)
OR colour (1)
as the nitrogen(IV) oxide is brown whereas the other gases are colourless (1)
$O R$ total volume (1)
which will decrease by one third/because there are fewer moles (1)
ALLOW acidity because NO_{2} acidic and others not (1 max)
NOT dilatometry
NOT temperature
(ii) [NO] second order (1)
because when conc of NO is doubled, the rate goes up four times (1)
$\left[\mathrm{O}_{2}\right]$ first order (1)
Then (iii), (iv) and (v) must follow consistently from (ii)
(iii) ALLOW TE from (ii) e.g.
rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
(iv) third / 3
8 (1) $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (1)
(v) 8000 (1) $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ (1)

Units can be given in any order
(d) The activation energy must be low
$O R$ bond energies low
NOT "more successful collisions"
NOT large rate constant
second / 2
rate $=\mathrm{k}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$
(1) ${ }^{3}$

2
26. (a) (i) $-\lg (0.05)=1.3(0)$ 1
IGNORE sig figs from this point on in this question
(ii) $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} / 0.05=2 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

OR via pOH
Correct answer with no working (1)
(b) (i) $\quad K_{\mathrm{a}}=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$

NOT using H^{+}instead of $\mathrm{H}_{3} \mathrm{O}^{+}$

$$
1
$$

(ii) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-1.20}$
$=0.063\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
$\mathrm{K}_{\mathrm{a}}=\frac{0.063^{2}}{0.500-0.063}$ (1) NOT consequential on $(b)(i)$
$=9.08 \times 10^{-3} \mathbf{(1)} \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
$=9.11 \times 10^{-3}$ if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$not rounded
ALLOW
$\mathrm{K}_{\mathrm{a}}=\frac{0.063^{2}}{0.500}$
$=7.94 \times 10^{-3} \mathbf{(1) ~ m o l ~ d m}{ }^{-3} \mathbf{(1)}$
$=7.96 \times 10^{-3}$ if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$not rounded
ALLOW consequential marking on numerical errors
Correct answer with units and some working (4)
(c) (i) Assign the terms 'acid/base' (1)
link the pairs (1)
2
(ii) presence of H^{+}from the first dissociation keeps equilibrium to left /suppresses ionisation
(d) Bromocresol green (1)
pK in $/$ range/colour change (of indicator) lies in vertical section OR
For alternative indicators $\mathrm{pK}_{\mathrm{in}} /$ range/colour change (of indicator) lie outside vertical section (1)
27. (a) pentyl dichloroethanoate (1)

ALLOW 1,1 OR 2,2-
ALLOW pent-1-yl /all one word
NOT penten
NOT pentan
NOT pentanyl
ester (1)
ALLOW esther
(b) (i) using a pipette remove a known volume (say $20 \mathrm{~cm}^{3}$) (1)
remove some solution - either with a pipette
$O R$ a known volume / $20 \mathrm{~cm}^{3}$
titrate with an alkali (such as sodium hydroxide) (1)
of known concentration (1)

- dependent on previous mark ie must have mentioned alkali

IGNORE quenching
using a named indicator eg. phenolphthalein/methyl orange (1)
NOT litmus / universal indicator
Measure pH on its own 1 (out of 4)
But if calculation fully explained from pH can get full marks
(ii) $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CHCl}_{2} \mathrm{COOC}_{5} \mathrm{H}_{11}(\mathrm{l})\right]}{\left[\mathrm{CHCl}_{2} \mathrm{COOH}(\mathrm{l})\right] \times\left[\mathrm{C}_{5} \mathrm{H}_{10}(\mathrm{l})\right]}$

State symbols not required
(iii) $\mathrm{C}_{5} \mathrm{H}_{10}$
1.7 (1) $\frac{1.7}{0.3}=5.67(5.7)$ NOT 5.66
$\mathrm{CHCl}_{2} \mathrm{COOC}_{5} \mathrm{H}_{11}$
0.6 (1) $\frac{0.6}{0.3}=2$
(1) for \div moles at eq by 0.3 in both cases

$$
\text { (iv) } \begin{aligned}
2 \mathrm{~K}_{\mathrm{c}} & =\frac{0.6 / 0.3}{1.33} \times 1.7 / 0.3 \quad \text { (1) }=\frac{2}{1.33 \times 5.67} \\
& =0.265(1) \mathrm{dm}^{3} \mathrm{~mol}^{-1} / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathbf{(1)}
\end{aligned}
$$

NOT dm ${ }^{-3}$
ALLOW 0.27 / 0.26 / 0.264
Penalise 1 SF or 4SF or more SF but only take off 1 mark maximum in (iii) and (iv) for significant figure errors

ALLOW TE from expression in (ii)
TE using numbers for (iii) full marks possible 3
28. (a) Enthalpy/heat/energy change for one mole of a compound/substance/ a product (1)
NOT solid/molecule/species/element
Reject "heat released or heat required" unless both mentioned
to be formed from its elements in their standard states (1)
ALLOW normal physical state if linked to standard conditions
Reject "natural state" / "most stable state"
standard conditions of 1 atm pressure and a stated temperature (298 K) (1)
Reject "room temperature and pressure"
Reject "under standard conditions"
(b)
(i)
Bonds broken
$\mathrm{N} \equiv \mathrm{N}(+) 945$

Bonds made
=N (+)945
6N-H (-)2346 (1)
and

$\Delta \mathrm{H}=945+1308-2346$
$=-93$ sign and value (1)
$\Delta H^{\ominus}=-\underline{93}=-46.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
sign and value q on $3^{\text {rd }}$ mark (1)
2
Accept -46.5 ($\mathrm{kJ} \mathrm{mol}^{-1}$) with working (4)
Accept +46.5 with working max (3)
Accept +93 with working max (2)
(ii)

Accept - 46.5
Correct labelled levels (1)
Reject "Reactants" and "Products" as labels
$\Delta \mathrm{H}$ labelled (1)
direction of arrow must agree with thermicity
Accept double headed arrow
Diagram marks cq on sign and value of ΔH in (b)(i)
IGNORE activation energy humps
(iii) $350-500^{\circ} \mathrm{C}$ (1)

Accept any temperature or range within this range
higher temperature gives higher rate (1)
but a lower yield because reaction is exothermic (1)
Accept favours endothermic reaction more than exothermic so lower yield

OR
Lower temperature give higher yield because reaction is exothermic (1) but rate is slower (1)

Accept cq on sign of ΔH_{f} in (b)(i) or levels in (ii)
Reject lower temp favours exothermic reaction
(iv) Iron / Fe (1) IGNORE any promoters no effect on yield (1)

Reject just "more ammonia"
(ii) disadvantage
(plant more) expensive because thicker pipes would be needed
OR
cost (of energy) for compressing the gases/cost of pump
OR
Cost of equipment/pressure not justified by higher yield
Accept stronger or withstand high pressure for thicker
Accept vessel/container/plant /equipment/reaction vessels for pipes
Reject "just more expensive"
Reject "just thicker pipes etc"
Reject apparatus
29. IGNORE s.f. throughout this question
(a) Acid

Proton or H^{+}donor
Or forms H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$(1)
Weak
dissociates to a small extent
Or ionises to a small extent (1)
Accept few molecules dissociate
Or incomplete dissociation
Or partial dissociation
Reject "not fully dissociated" Or "not dissociated fully"
(b) $\quad 2 \mathrm{HCOOH}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{HCOONa}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Or
$\mathrm{HCOOH}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{HCOONa}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{aq})$
Species + balancing (1)
State symbols (1) Consequential on correct species
Accept $\ldots \rightarrow 2 \mathrm{HCOONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
Accept $\mathrm{HCO}_{2} \mathrm{H}$ for the acid
Accept $\mathrm{HCO}_{2} \mathrm{Na}$ or $\mathrm{HCOO}^{-} \mathrm{Na}^{+}$for salt
(c) (i) one acid: HCOOH

Conjugate base: HCOO-
1 mark for both
Accept correct acids and conjugate bases in either order ACCEPT
$\mathrm{HCO}_{2} \mathrm{H}$ and $\mathrm{HCO}_{2}{ }^{-}$
OR

other acid: $\mathrm{H}_{3} \mathrm{O}^{+}$
Conjugate base: $\mathrm{H}_{2} \mathrm{O}$
1 mark for both
Reject H^{+}for $\mathrm{H}_{3} \mathrm{O}^{+}$
(ii) $\left(\mathrm{K}_{\mathrm{a}}\right)=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HCOOH}]}$

Accept $\left[\mathrm{H}^{+}\right]$instead of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Must use square brackets
(iii) $\left[\mathrm{H}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}} \times[\mathrm{HCOOH}]$

OR
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}$
OR
$\left[\mathrm{H}^{+}\right]^{2}=1.60 \times 10^{-4} \times 0.100(\mathbf{1})$
$\left[\mathrm{H}^{+}\right]=\sqrt{1.60 \times 10^{-4} \times 0.100}$
$=4.0 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
$p H=4.8$ scores (2) as square root has not been taken
IGNORE sig figs
Max 1 if $\left[\mathrm{H}^{+}\right]^{2}$ expression incorrect

$$
\begin{aligned}
& \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=2.40(\mathbf{1})
\end{aligned}
$$

Accept any pH value consequential on $]\left[\mathrm{H}^{+}\right]$, provided $\mathrm{pH}<7$
Reject $\mathrm{pH}=2.39$ (is a rounding error) so no third mark
Alternative method

$$
\begin{aligned}
& \mathrm{pK}_{\mathrm{a}}=3.80(\mathbf{1}) \\
& \mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \log [\text { acid } \mathbf{(1)} \\
& \mathrm{pH}=1.90-(-0.50) \\
& \mathrm{pH}=2.40(\mathbf{1})
\end{aligned}
$$

Reject $p H=2.39$ (is a rounding error) so no third mark
(d) (i) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{\text { [acid }]}{[\text { salt }]}$

OR
$\left[\mathrm{H}^{+}\right]=1.60 \times 10^{-4} \times \frac{0.0500}{0.200}$ (1)
$=4.00 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
Reject $\frac{0.100}{0.400}$
$\mathrm{pH}=4.40$ (1) IGNORE sig figs
Reject 4.39 (rounding error) so no third mark
OR
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log _{10}\left\{\frac{[\mathrm{HCOOH}]}{\left[\mathrm{HCOO}^{-}\right]}\right\}$(1)
$\mathrm{pH}=-\log _{10}\left(1.60 \times 10^{-4}\right)-\log _{10}\left\{\frac{0.0500}{0.200}\right\}$ (1)
Reject $\frac{0.100}{0.400}$
$\mathrm{pH}=3.80-(-0.60)$
$\mathrm{pH}=4.40$ (1) IGNORE sig figs
Reject 4.39 (rounding error) so no third mark
(ii) Addition of H^{+}ions:
$\mathrm{HCOO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HCOOH}$
Accept if described in terms of $H A \rightleftharpoons H^{+}+A^{-}$shifting to left
Addition of OH^{-}ions:
$\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O}$ (1)
If the ionisation of sodium methanoate shown with
\rightleftharpoons then max (1) out of 2 for above equations
Addition of OH ions:
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ must be followed by more dissociation of
HCOOH (to restore $\left[\mathrm{H}^{+}\right]$)
Accept "molecular" equations or equations described in words or notation involving $H A, H^{+}$and A^{-}.
(buffer solution has) high concentrations
Or a large reservoir of both HCOOH and HCOO^{-} relative to added $\mathrm{H}^{+} / \mathrm{OH}$ (1)
(hence virtually no change in $\left[\mathrm{H}^{+}\right]$)
Accept just "large reservoir of both HCOOH and $\mathrm{HCOO}^{-"}$
30. (a) IGNORE s.f. throughout this question
(i) moles $\mathbf{S O}_{2}(10.0-9.00)=1.00(\mathrm{~mol})$
moles $\mathbf{O}_{2}(5.00-4.50)=0.500(\mathrm{~mol})$
moles $\mathbf{S O}_{3} 9.00$ (mol)
all 3 correct \rightarrow (2)
2 correct \rightarrow (1)
Reject multiples of the stated moles
(ii) All three \div total number of moles (1)
i.e.
$X_{\mathrm{SO}_{2}}=\frac{1.00}{10.5}(=0.0952)$ or $2 / 21$
$X_{\mathrm{O}_{2}}=\frac{0.500}{10.5}(=0.0476)$ or $1 / 21$
$X_{S O_{3}}=\frac{9.00}{10.5}(-0.857)$ or $18 / 21$ or $6 / 7$
Reject rounding to 1 sig fig
Mark consequential on (a)(i)
(iii) All three \times total pressure (1)
i.e.
$\mathrm{pSO}_{2}=\frac{1.00}{10.5} \times 2.00$ or $4 / 21$

$$
=0.190(\mathrm{~atm})
$$

$\mathrm{pO}_{2}=\frac{0.500}{10.5} \times 2.00$ or $2 / 21$

$$
=0.0952(\mathrm{~atm})
$$

$\mathrm{pSO}_{3}=\frac{9.00}{10.5} \times 2.00$ or $36 / 21$ or $12 / 7$

$$
=1.71(\mathrm{~atm})
$$

Mark consequential on (a)(ii)
(iv) $\quad K_{p}=\frac{(1.71)^{2}}{(0.190)^{2} \times(0.0952)}$
$K_{p}=851$ (1) $\mathrm{atm}^{-1} \mathbf{(1)}$
Mark consequential on (a)(iii) and (a)(iv)
Accept answer with units and no working (2)
Accept "correct answers" between 845 and 855 as this covers rounding up etc
Reject wrong units e.g. $\mathrm{mol}^{-1} \mathrm{dm}^{3}$
(b) (i) $\left(K_{\mathrm{p}}\right)$ decreases
(ii) (K_{p} decreases so)

Reject any Le Chatelier argument (this prevents access to $1^{\text {st }}$ mark)
fraction/quotient $\frac{p^{2} \mathrm{SO}_{3}}{p^{2} \mathrm{SO}_{2} \times p \mathrm{O}_{2}}$
has to decrease (to equal new k_{p}) (1)
so shifts to left hand side (1) - this mark only available if (b)(i) answer was k_{p} decreases.

Reject shifts to right, even if answer to (b)(i) was k_{p} increases
(as $\mathrm{p}_{\mathrm{SO}_{3}}$ decreases whereas $\mathrm{p}_{\mathrm{SO}_{2}}$ and $\mathrm{P}_{\mathrm{O}_{2}}$ increase)
(c) (i) No effect/none/zero (effect)

(ii) Increases
OR
more $\mathrm{SO}_{3} /$ more sulphur trioxide OR increases amount of $\mathrm{SO}_{3} /$ sulphur trioxide
(d) (i) No effect/none/zero (effect) 1
(ii) No effect/none/zero (effect) 1
31. (a) $\mathrm{H}^{+} \quad 1$ Accept $\mathrm{H}_{3} \mathrm{O}^{+}$
(b) $\mathrm{HCOOH} / \mathrm{HCO}_{2} \mathrm{H}(1)$
$\mathrm{HNO}_{3}(1)$
-1 for each extra incorrect answer
Accept C and E
32. (a) (i) $\mathrm{pH}=3.5$ (1)
$\log _{10}\left[\mathrm{H}^{+}\right]=-3.5$
$\Rightarrow\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \mathbf{(1)}$
$2.5(\mathbf{1}) \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ based on $\mathrm{pH}=3.6$ (2 marks)
Accept T.E. from wrong pH providing <7
Accept $3.2 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$
$3 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ allowed if evidence of rounding being applied
(ii) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]}$ (1)

Accept version with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Accept molecular formulae

$$
\text { Accept } \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]}
$$

(iii) $\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right]}$ (1)
$=\frac{\left(3.16 \times 10^{-4}\right)^{2}}{0.00660}\left(1^{\text {st }}\right.$ mark can be scored here $)$
$=1.5 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
Ignore units
Only 2 sig. fig. allowed
Accept TE from (i)
Allow any number of s.f. provided consistent with calculation
Reject TE from (ii)
(b) (i) $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}((\mathrm{aq}))+\mathrm{NH}_{3}((\mathrm{aq})) \rightarrow$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\left(^{-}\right) \mathrm{NH}_{4}\left(^{+}\right)((\mathrm{aq}))$
Molecular formulae acceptable
Accept eqn via $\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}+\mathrm{NH}_{4}{ }^{+}$
Reject any amide product
(ii) Ammonium butanoate (1)
(Excess) butanoic acid (1)
no TE from (b)(i)
Accept ammonium ions and butanoate ions (1)
Reject butanoate ions alone
Reject formulae
(iii) A buffer (mixture) (1)

There is a relatively small rise /change in $\mathbf{~} \mathbf{H}$ (as aqueous ammonia is added) OWTTE (1) Mark independently

Reject sharp neutralisation point/no change in pH
(iv) There is no large increase in $\mathrm{pH} /$ vertical shape to the graph (at the end-point) OWTTE

Accept no sudden change in pH
Reject no indicator has the required pH range

(v) EITHER

End-point $=30 \mathrm{~cm}^{3}(\mathbf{1})$
$\Rightarrow\left[\mathrm{NH}_{3}\right]=(10 / 30) \times 0.00660=0.00220\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
OR
$10 \mathrm{~cm}^{3}$ of butanoic acid contain $6.60 \times 10^{-5} \mathrm{~mol}$
From equation this requires $6.60 \times 10^{-5} \mathrm{~mol} \mathrm{NH}_{3}$
From graph, end-point $=30 \mathrm{~cm}^{3} \mathbf{(1)}$
$\Rightarrow\left[\mathrm{NH}_{3}\right]=6.60 \times 10^{-5} \times(1000 / 30)$
$=2.20 \times 10^{-3} / 0.00220\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
Allow internal TE for $2^{\text {nd }}$ mark based on an incorrect equivalence point i.e. $0.0660\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

Allow T.E. from (b)(i)
33. (a)

Do not worry about general shape of the curve, the scoring points are:

- Starting $\mathrm{pH} \sim 1$ and finishing pH between 9 and 11 (1)
- Vertical at $25 \mathrm{~cm}^{3}$ (1)
- Vertical range: at least three pH units in the range 3 to 8
e.g. pH range 3 to 6 OR 3 to 7 OR 3 to 8 OR 4 to 7

OR 4 to 8 OR 5 to 8 (1)
(do not need to start/finish on whole numbers)
Accept pH range 3 to 5

- Middle of vertical pH range between 4 and 6 (1)
(b) Bromocresol green

Indicator(s) CQ on graph [check table on question paper]
(c) pH change around equivalence point too small OR pH changes over too big a volume (1)

Accept too small a vertical (region)
OR no vertical (region)
OR no point of inflexion
OR no sudden change in pH
OR no straight section
for a sharp colour change of indicator (1)
Accept no sharp/clear/precise end point OR very small range over which indicator changes colour
Reject no suitable indicator OR No "easy" colour change
[If say ammonia is a strong base or ethanoic acid is a strong acid, or both, (0 out of 2)]
34. (a)

(b) ester
(c) (i) Moles: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: 3.75$ (1)

Moles: $\mathrm{HCOOC}_{2} \mathrm{H}_{5}: 2.50$ and moles $\mathrm{H}_{2} \mathrm{O}$: 2.50 (1) for both
(ii) $K_{c}=\frac{\left[\mathrm{HCOOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{HCOOH}]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}$

> Reject obviously round brackets "()"
(iii) $\quad K_{c}=\frac{2.50 / 0.485^{\times 2.50} / 0.485}{0.50 / 0.485^{\times 3.75} / 0.485}$ (1)

Must have clearly divided moles of each component by 0.485 for $1^{\text {st }}$ mark e.g.
$\left[\mathrm{HCOOC}_{2} \mathrm{H}_{5}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]=5.16\left(\mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$
and $[\mathrm{HCOOH}]=1.03\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
and $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=7.73\left(\mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$
$=3.33$ (1) stand alone mark
IGNORE sig.figs.
Accept $K_{c}=\frac{(2.50)^{2}}{0.50 \times 3.75}=3.33$ only scores (2) if it is stated that V cancels either here or in (iv)
If $\left[\mathrm{H}_{2} \mathrm{O}\right]$ omitted in (ii), then answer
$K_{c}=0.647 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
(2) but this will give $K_{c}=1.33 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$ with V omitted from calculation (1)

Reject $1^{\text {st }}$ mark if 485 used as V in expression
(iv) No, (as) equal numbers of moles on both sides

OR volumes cancel
OR mol dm ${ }^{-3}$ cancel
OR units cancel
OR crossing out units to show they cancel
Accept "equal powers/moles on both sides"
OR "powers cancel"
Mark CQ on K_{c} expression in (ii)
Reject "concentrations cancel"
(d) (i) (as reaction) endothermic (1)

Accept exothermic in backward direction (or words to that effect)
K_{c} decreases (1)
If state exothermic in forward direction, 1 mark only (out of 4) for CQ "increase in K_{c} "
numerator in quotient (has to) decrease OR denominator in quotient (has to) increase
OR fraction (has to) decrease (1)
yield of $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$ decreases (1)
(ii) no effect as catalysts do not affect (the value of) K OR no effect as catalysts do not affect the position of equilibrium OR no effect as catalysts do not affect the yield OR
No effect as catalysts increase the rate of the forward and backward reactions equally/to the same extent
OR
no effect as catalysts only increase the rate
OR
no effect as catalysts only alter the rate
"no effect" can be stated or implied
IGNORE any references to activation energy
Reject just "catalysts increase rate"
35. (a) The amount of a solid present is immaterial since Kc does not depend on this

OR solids do not appear in expression for equilibrium constants IGNORE any references to solid in excess.
(b) $\mathrm{Ag}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}$

IGNORE state symbols
(c) Correct answer with some working and correct units scores full marks.

Otherwise steps in calculation must make it reasonably clear to examiner what is being calculated (QWC).
(initial amount) $\mathrm{I}^{-}=0.100 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.050 \mathrm{dm}^{3}=5 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
Amount $\mathrm{Ag}^{+}=0.100 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.031 \mathrm{dm}^{3}=3.1 \times 10^{-3} \mathrm{~mol}$ (1)
\therefore equilibrium amount $\mathrm{I}^{-}=3.1 \times 10^{-3} \mathrm{~mol}$ (1)
I^{-}reacted $=(5-3.1) \times 10^{-3} \mathrm{~mol}=1.9 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
If this subtraction is not carried out then the next mark (for calculating amount of sulphate) can not be awarded.
Thus amount of sulphate $=1 / 2 \times 1.9 \times 10^{-3}\left(=9.5 \times 10^{-4} \mathrm{~mol}\right)(\mathbf{1})$
conc iodide $=\frac{3.1 \times 10^{-3} \mathrm{~mol}}{0.05 \mathrm{dm}^{3}}\left(=0.062 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$
AND conc sulphate $=\frac{0.95 \times 10^{-3} \mathrm{~mol}}{0.05 \mathrm{dm}^{3}}\left(=0.019 \mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
The mark is for the process of dividing by $0.05 \mathrm{dm}^{3}$
$K_{\mathrm{c}}=0.019 / 0.062^{2}=4.94$ (1) Answer must be to 2 or more S.F. Value consequential on dividing their moles by a volume.
$\mathrm{mol}^{-1} \mathrm{dm}^{3}$ (1) Stand alone
36. (a) (i) Pairs: acid $\mathrm{NH}_{4}{ }^{+}$/ammonium ion and base NH_{3} /ammonia
acid $\mathrm{H}_{3} \mathrm{O}^{+}$/ hydronium ion and base $\mathrm{H}_{2} \mathrm{O}$ / water
Accept hydroxonium ion
(ii) $K_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}$ignore lower case k

Accept $K_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]}$
Reject answers including [$\mathrm{H}_{2} \mathrm{O}$]
(iii) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ (1)

Assumption ionization of $\mathrm{NH}_{4}{ }^{+}$(negligibly) small (1)
Assumption $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$(1)
Accept $\left[\mathrm{NH}_{4}{ }^{+}\right]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]$ or $\mathrm{NH}_{4} \mathrm{Cl}$ totally ionized
thus $\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=\left(1 \times 10^{-5}\right)^{2} / 5.62 \times 10^{-10}$
$=0.178 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
Answer to 2 or more S.F.
(iv) QWC
methyl red (1)
indicator constant or $\mathrm{p} K_{\text {In }}$ must be near the endpoint pH OR indicator constant or $\mathrm{p} K_{\text {In }}$ must be near 5 (1)
$2^{\text {nd }}$ mark conditional on correct indicator
Accept $p K_{\text {In }}$ in the steep part of the graph or it is a weak basestrong acid titration
(b) $\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-}$

IGNORE state symbols
Accept " \rightarrow " instead of " \rightleftharpoons "
(c) (i) nucleophilic addition
(ii)

(1) for both arrows (1) for intermediate

OR for second step

(1)

Fish hook arrows (penalise once)

- Ignore the groups attached to the carbonyl carbon throughout
- The intermediate is not consequential on their first step
- The minus of the cyanide ion can be on either the C or the N
- The arrow can start from the minus of ${ }^{-} \mathrm{CN}$ in step 1 (but not from the minus of CN^{-}) and can start from the minus of O^{-}in step 2
- The arrow from the bond must not go past the O atom
- Lone pairs not essential
- Single step addition of HCN or initial attack by $\mathrm{H}^{+} / \mathrm{HCN}$ scores zero
- Autoionisation of $\mathrm{C}=\mathrm{O}$ can only score the last two marks ie max 2
(iii) QWC
if too acidic too small a concentration of cyanide ions (1)
Accept not enough / too little CN
if too alkaline too little HCN to donate the proton in the last step $\mathrm{OR} \mathrm{H}^{+}$ion concentration too low (1)
(d) (i) rate $=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right]\left[\mathrm{CN}^{-}\right]$

Must be an equation
Must be [] NOT ()
Ignore upper case K
Accept ' R ' or 'r' for rate $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$] / [1-chloropropane]/
[chloropropane]
Accept [cyanide ion]/[cyanide]
Reject [KCN]
(ii)

Curly arrow (1) Transition state (1)

- Must have partial bonds in transition state
- CN and Cl must be on opposite sides of central C in the transition state
- Accept negative charge on N of cyanide ion

Mechanism based on $S_{N} 1$ scores 0
Reject fish hook arrows (penalise once)
Reject arrow from N of $C N$
37. (a) (i) $[6 \times 188.7+4 \times 210.7]-[4 \times 192.3+5 \times 205]$ (1)
$+180.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (1)
Accept $+181 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Reject internal TE
-1 for missing + sign/missing or incorrect units but penalise only once in part (a)
[IGNORE sig fig]
(ii) yes, as $\mathbf{9}$ molecules of gas are being changed to $\mathbf{1 0}$ molecules of gas (therefore increase in disorder)

Accept TE from (i)
Not just 9 molecules going to 10 molecules
(iii) $\quad-905.6 \times 1000 / 1123(1)$
$+806.4 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / 0.8064 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(\mathbf{1})$
[IGNORE SF]
Accept $+806 \mathrm{~J} \mathrm{~mol} \mathrm{~K}^{-1}$
(iv) $\quad+987.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Accept $+987 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
allow TE from (i) \& (iii)
No TE if $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ added to $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
(v) All products/reaction goes to completion because $\Delta \mathrm{S}_{\text {tot }}>200 \mathrm{~J}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1} / \Delta \mathrm{S}_{\text {tot }}$ is very large
[Needs to be consistent with (iv)]
(vi) catalysed pathway should have lower E_{a} than uncatalysed pathway and the peak of the curve should be above the energy level of the reactants (1)

Energy of products should be lower than energy of reactants (1)
(b) (i) $\quad K_{p}=\frac{p N O_{2}{ }^{2}}{p N O^{2} \times p O_{2}}$

$$
\text { Accept } \frac{p^{2} \mathrm{NO}_{2}}{p^{2} \mathrm{NO} \times p \mathrm{O}_{2}}
$$

Reject []
(ii) mole fraction $\mathrm{NO}_{2}=\frac{4.95}{5}$ or 0.99 (1)
mole fraction $\mathrm{NO}=\frac{0.025}{5}$ or 0.005
OR
mole fraction $\mathrm{O}_{2}=\frac{0.025}{5}$ or 0.005 (1)
$\mathrm{K}_{\mathrm{p}}=\frac{(0.99)^{2}(1.5)^{2}}{(0.005)^{3}(1.15)^{3}}=5227200 / 5.2 \times 10^{6} \mathbf{(1)}$
$\mathrm{atm}^{-1} \mathbf{(1)}$ unit mark independent but consistent with expression used in calculation.

IGNORE SF
Correct answer for K_{p} alone $=3$ max
(iii) Equilibrium lies to $\mathrm{RHS} /$ products side as K_{p} is large

OR reaction won't go to completion as $\mathrm{K}_{\mathrm{p}}<10^{10}$
Must be consistent with (ii)
Allow TE from b(ii)
(iv) K_{p} remains unchanged as pressure does not affect it / only temperature affects $\mathrm{K}_{\mathrm{p}}(\mathbf{1})$
partial pressure of NO2 increases as eqm moves to side of fewest (gas) molecules/RHS (1)
or
Partial pressure of NO2 increases as $\mathrm{pp}=$ mole fraction \times total pressure

Accept justification in terms of entropy
38. (a) (i) $K_{a}=\frac{\left[\mathrm{CH}_{2} \mathrm{ClCO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{2} \mathrm{ClCO}_{2} \mathrm{H}\right]}$

Accept $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in place of $\left[\mathrm{H}^{+}\right]$
allow one set of sq brackets to be missing
(ii) $\left[\mathrm{H}^{+}\right]^{2}=1.3 \times 10^{-3} \times 0.001$ (1)
$=1.3 \times 10^{-6}$
$\left[\mathrm{H}^{+}\right]=\sqrt{ } 1.3 \times 10^{-6}$
$1.14 \times 10^{-3} \mathbf{(1)}$
$\mathrm{pH}=-\log 1.14 \times 10^{-3}=2.9(4)(\mathbf{1})$
[IGNORE SF]
(iii) Trichloroethanoic, as it has the largest K_{a} value (1)
and has (3 electron withdrawing) chlorine atoms to stabilise the anion formed (on dissociation). (1)
(b) (i)

ester group (1)
rest of molecule (1) dependent on first mark
(must be fully displayed)
methyl chloroethanoate (1)
No transferred error for name
(ii) ester(s)

Reject ether
(iii) nucleophile, (1)
as it has a lone pair (of electrons) on the (hydroxyl) oxygen (1)
which can attack the positive carbonyl carbon on the acid (1)
$2^{\text {nd }}$ and $3^{\text {rd }}$ marks could be obtained by use of a diagram
Reject attack by $\mathrm{CH}_{3} \mathrm{O}^{-}$
(iv) (reflux) heat with $\mathrm{NaOH}(\mathrm{aq})(1)$ (cool) and add $\mathrm{HCl}(\mathrm{aq})(1)$
OR
reflux (1) [must be in context] with $\mathrm{HCl}(1)$
39. (a) $\mathrm{N} / \mathrm{N}_{2}$ goes from 0 to $-3=$ reduction (1)
$\mathrm{H} / \mathrm{H}_{2}$ goes from 0 to $(+) 1=$ oxidation (1)
If "the oxidation number of N goes down hence reduced and the oxidation number of H goes up and hence oxidised" (max 1)
If all O.N. correct but fails to state which is oxidation and which is reduction scores 1.
If all O.N. correct but both reactions misclassified, scores zero. Any answer not referring to nitrogen or hydrogen scores zero.
(b) (i) Calculation of bonds broken $463 \times 3+944 /(=2252)(1)$

Calculation of bonds made $388 \times 6 /(=2328)(1)$
$\Delta H=-76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}$
mark consequential on numerical values calculated above
Correct answer with some working scores 3 marks
Correct answer alone scores 2 marks
(ii) Average / mean bond enthalpy used for $\mathbf{N}-\mathbf{H}$ bond / ammonia

Reject just "average bond enthalpies used"
(iii) Thermodynamic:
energy level of products lower than that of reactants OR energy released in bond formation > energy used to break bonds (1)

Accept ΔH negative / reaction exothermic
kinetic:
high activation energy (1)
because strong $\mathrm{N} \equiv \mathrm{N}$ (1)
[confusion between thermodynamic and kinetic loses first 2 marks].
Accept because $N \equiv N$ is $944 /$ total bond breaking energy is
high/2252($\mathrm{kJ} \mathrm{mol}^{-1}$)
(c) (i) QWC

One way
temperature increase therefore molecules have greater (average kinetic) energy (1)

Accept moving faster
more molecules/collisions have $\mathrm{E} \geq \mathrm{E}_{\text {act }}$ (1)
Therefore a greater proportion of/ more of the collisions are successful (1)
Ignore greater frequency of collision
Accept $E>E_{\text {act }}$ particles for molecules
greater frequency of successful collisions/ more successful
conditions per unit time
Reject just "more successful collisions"
Another way
addition of (iron) catalyst (1)
Accept platinum catalyst
Reject incorrect catalyst
provides alternative route of lower activation energy (1)

EITHER:

A greater proportion of /more of the molecules/collisions have $\mathrm{E} \geq \mathrm{E}_{\mathrm{cat}}$ / a greater proportion of collisions are successful

Reject just "more successful collisions"
OR provides (active) sites (where reactant molecules can bond / be adsorbed) (1)
Ignore any answers referring to pressure or concentration.
Do not penalise just "more collisions are successful" more than once
(ii) QWC

Decrease temperature (1)
because (forward) reaction exothermic (1)
increase pressure (1)
because more moles (of gas) on left (1)
Accept low temperature ΔH is negative
Answer based on endothermic reaction scores 0
Accept high pressure
Accept molecules for moles
40. (a) (i) To slow down the reaction/to stop the reaction

OR to quench the reaction
OR to freeze the (position of) equilibrium OWTTE (1)
so that the (equilibrium) concentrations/amounts do not change (1)
Accept to stop equilibrium shifting to the left
(ii) First mark:
$\left[H_{2_{(g)}}\right]=\left[I_{2_{(g)}}\right]$
OR
Use of $\left(5.0 \times 10^{-4}\right)^{2}(\mathbf{1})$
If [HI] not squared, first mark only.

Second mark:

$\left[H I_{(g)}\right]^{2}=\frac{\left(5.0 \times 10^{-4}\right)^{2}}{0.019}$
OR
$0.019=\frac{\left(5.0 \times 10^{-4}\right)^{2}}{\left[\mathrm{HI}_{(\mathrm{g})}\right]^{2}}$
OR
$[\mathrm{HI}(\mathrm{g})]=\sqrt{\left(\frac{\left(5.0 \times 10^{-4}\right)^{2}}{0.019}\right)}$

Third mark:

$\left[\mathrm{HI}_{(\mathrm{g})}\right]=3.6 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
Correct answer scores 3 marks.
Ignore state symbols.
Ignore units unless wrong. Ignore s.f.

If first mark not awarded, total (0)
(b) (i) $\quad K_{p}=\frac{p_{H I}^{2}}{p_{\mathrm{H}_{2}} \times p_{\mathrm{I}_{2}}}$

Ignore position of any ()
(ii) Each step of this calculation must be looked at.
$1^{\text {st }}$ mark is for calculating equilibrium moles
$\mathrm{H}_{2}=0.2$
$\mathrm{I}_{2}=0.2$
$\mathrm{HI}=1.6(\mathbf{1})$
Mark consequentially
$2^{\text {nd }}$ mark is for dividing these by 2 (to get mole fractions)
$x_{H 2}=\frac{0.2}{2.0}=0.1$
$x_{I_{2}}=\frac{0.2}{2.0}=0.1$
$x_{H I}=\frac{1.6}{2.0}=0.8$

Mark consequentially

$3^{\text {rd }}$ mark is for multiplying by 1.1 (to get partial pressures)
$\mathrm{P}_{\mathrm{H}_{2}}=\frac{0.2}{2.0} \times 1.1$
$=0.11(\mathrm{~atm})$
$\mathrm{P}_{I_{2}}=\frac{0.2}{2.0} \times 11$
$=0.11$ (atm)
$\mathrm{P}_{\mathrm{HI}}=\frac{1.6}{2.0} \times 11$
$=0.88(\mathrm{~atm})(\mathbf{1})$
Mark consequentially
$4^{\text {th }}$ mark is for substituting into their expression and calculating K_{p}
$K_{p}=\frac{(0.88)^{2}}{(0.11) \times(0.11)}$
$=64(1)$
Ignore s.f.
Correct answer with no working scores (1)
If moles HI given as $0.8, K_{p}=16 \max$ (3)
(iii) Same number of moles on each side OR
(Total) pressure cancels
OR
(Pressure) units cancel
(May be shown by crossing out etc. in b(ii))
Accept 'Powers cancel'
OR
'They cancel'
OR
'Same number of molecules on each side'
Reject 'Partial pressures cancel' OR
'mol dm ${ }^{-3}$ cancel'
41. (a) (i) One acid: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})$

Conjugate base: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}(\mathrm{aq})(\mathbf{1})$
Other acid: $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Conjugate base: $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})(1)$
Ignore state symbols
Accept correct acids with conjugate bases in either order
(ii) WEAK: dissociates/ionises to a small extent (1) OWTTE

Accept 'Few molecules dissociate'
Accept 'Incomplete' or 'partial' dissociation
Accept "Does not fully dissociate"
Reject "ions partially dissociate"
ACID: proton donor (1)
Accept Produces $\mathrm{H}_{3} \mathrm{O}^{+}$/ hydrogen / H^{+}ions
Reject just "contains $\mathrm{H}_{3} \mathrm{O}^{+}$...."
(b) (i) $\quad K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$

Accept $\left[\mathrm{H}^{+}\right]$instead of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Reject any expression containing $\left[\mathrm{H}_{2} \mathrm{O}\right]$
(ii) $\left(\left[\mathrm{H}^{+}\right]=\right) 3.63 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$

Or $10^{-3.44}$
If K_{a} expression incorrect in (b)(i) or $\left[H^{+}\right]$not squared, only $1^{\text {st }}$ mark available
$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{1.30 \times 10^{-5}}$
Or

$$
\begin{aligned}
{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right] } & =\frac{\left(3.63 \times 10^{-4}\right)^{2}}{1.30 \times 10^{-5}} \mathbf{(\mathbf { 1 })} \\
& =0.010(\mathbf{1})\left(\mathrm{mol} \mathrm{dm}^{-3}\right)(\mathbf{1})
\end{aligned}
$$

ASSUMPTIONS:

First assumption mark:
negligible $\left[\mathrm{H}^{+}\right]$from ionisation of water $\operatorname{Or}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]$(1)
Accept "No other source of H^{+}ions"
Reject Just " $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}=\mathrm{H}^{+}$" (ie no square brackets)

Second assumption mark:

Ionisation of the (weak) acid is negligible
Or $\mathrm{x}-\left[\mathrm{H}^{+}\right] \approx \mathrm{x}$ where x is initial concentration of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
Or $\left[\mathrm{H}^{+}\right] \ll[\mathrm{HA}]$ (1)
Accept "Very slight ionisation ..."
"the initial [HA] = equilibrium [HA]"
Reject any mention of non-standard conditions or 'temperature not at $298 K^{\prime}$
(c) (i) Ignore "A solution of known pH which...."
maintains nearly constant pH
OR
resists change in pH (1) OWTTE
on adding small amounts of acid or alkali (1)
Mark independently
(ii) Working MUST be checked

First mark:
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{\text { [acid }]}{[\text { base }]}(\mathbf{1})$
Accept $K_{a}=\frac{\left[\mathrm{H}^{+}\right] \times[\mathrm{salt}]}{[\mathrm{acid}]}$

Second mark:

Correct [acid] $=0.0025$ and [salt] $=0.00375$ (1)

Third mark:

Calculation of pH correct consequential on [acid] and [salt] used.
$\left[H^{+}\right]=1.30 \times 10^{-5} \times \frac{0.0025}{0.00375}$
$=8.67 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{pH}=5.06$ (1)
Accept if [salt] and [acid] inverted, pH is 4.71 (2 marks)
Accept inverted with the original concentrations, $p H=5.19$ (1 mark)

Ignore sig fig

OR

First mark:

$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log _{10} \frac{\text { [acid] }}{[\text { salt }]}(\mathbf{1}$
Reject in both cases, if [acid] $=$ [0.0100] and [salt] $=$ [0.00500], pH = 4.59 (2 marks)

Second mark:

Correct [acid] $=0.0025$ and [salt] $=0.00375$ (1)

Third mark:

Calculation of pH correct consequential on [acid] and [salt] used.
$\mathrm{pH}=4.89-\log _{10} \frac{[0.0025]}{[0.00375]}(\mathbf{1})$
$=4.89-(-0.18)$
$=5.07$ (1)
Accept 5.06
Ignore sig fig 3
42. (a) (i) $\mathrm{K}_{\mathrm{p}}=\frac{\left(p_{N O}\right)^{2}}{p_{N_{2}} \times p_{\mathrm{O}_{2}}}$

Allow answer with brackets and/or "x" omitted Ignore (g) and eq

Accept $\mathrm{K}_{\mathrm{p}}=\frac{p^{2}{ }_{\mathrm{NO}}}{p_{N_{2}} \times p_{\mathrm{O}_{2}}}$
Reject anything in []
(ii) Same number of moles on each side of the equation OR

The (partial pressure) units all cancel out (in the expression for K_{p})
(b) (i) $\quad\left(\mathrm{p}_{\mathrm{NO}}\right)^{2}=0.87 \times 0.23 \times 5.0 \times 10^{-31}$ (1)
$=1.0 \times 10^{-31}$
$\mathrm{p}_{\mathrm{NO}}=\sqrt{ }\left(1.0 \times 10^{-31}\right)$
$=3.2 \times 10^{-16}$ (atm) (1)
Accept 3.16×10^{-16} (atm) (1)
Ignore sig fig
Mark consequentially only if based on reciprocal of correct expression in (a)(i)
(ii) $0.87+0.23\left(+3.2 \times 10^{-16}\right)=1.10 / 1.1$ (atm)

Allow TE from (b)(i)
Reject answer based on adding $2 \times p_{N O}$
(iii) p_{No} doubles/will become $6.4 \times 10^{-16} \mathrm{~atm}$ (1)
K_{p} remains constant/is (still) 5.0×10^{-31} (1)
Ignore any "neutral" qualifications to these answers 2

Accept $p_{\text {NO }}$ will increase
Reject more than double
Reject answers with incorrect reasoning
(c) (i) Reaction will occur, but (very) little NO is formed
OR
the equilibrium mixture is mainly
(unreacted) N_{2} and O_{2}
Accept reaction occurs, but equilibrium lies (very much) to the left

Reject "Reaction is more likely to occur from right to left" OR "Reverse reaction is favoured", unless included with acceptable answer
(ii) No change of state of any of the components is involved (as the gases are heated up) OWTTE
OR
All components are gases (at these temperatures)
IGNORE Any reference to the number of particles involved
(iii) (ΔH is positive so) $-\frac{\Delta \mathrm{H}}{\mathrm{T}}=\Delta \mathrm{S}_{\text {surroundings }}$ will be negative

No mark for "negative" alone
Accept negative, since for an endothermic reaction energy is taken from the surroundings causing a decrease in disorder / reduction in entropy
(iv) (As T increases) $\Delta \mathrm{S}_{\text {surroundings }}$ becomes greater/less negative/ more positive, so $\Delta \mathrm{S}_{\text {total }}$ (also) becomes greater/less negative/more positive/increases

Accept $\Delta S_{\text {surroundings }}$ becomes "smaller", if qualified, e.g. becomes closer to zero
(d) Equilibrium might not have been reached (in the very short time the gases are present in the engine)

Ignore references to the fact that the system is not "closed"
Accept other gases are present in the air (apart from N_{2} and O_{2})

Accept temperature inside engine may be less than 1500 K
Accept actual (total) pressure may be less than that assumed
43. $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]=(1 / 5 \times 0.010=) 0.002(0) \mathrm{mol} \mathrm{dm}^{-3}$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]=\left(4 / 5 \times 0.020=0.016 \mathrm{~mol} \mathrm{dm}^{-3}\right.$
Accept $p K_{a}=4.20$ (1)
Both correct (1)

$$
\text { Accept } \frac{0.002}{0.016} \text { (1) }
$$

$\left[\mathrm{H}^{+}\right]\left(=\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]\right.$
$=6.3 \times 10^{-5} \times 0.0020 / 0.016$)
$=7.875 \times 10^{-6} \mathbf{(1)}$

$$
\text { Accept pH }=(4.20+0.90)=5.1 / 5.10 \text { (1) }
$$

Do not penalise SF for the first two marks
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=5.1 / 5.10$ (1)
Mark for final answer must be dependant on valid working e.g. correct [acid]/[base] ratio.

Correct answer with no working (1)

Allow internal TE

e.g. an ${ }^{\text {[acid] } / \text { [base] }}$ ratio of ${ }^{0.010 / 0.020}$ leads to a pH of 4.50 (2)

Reject 5.104 or 5
Reject 1 or >3 sig. fig.
44. (a) $K_{p}=\frac{p_{\mathrm{NO}_{2}}^{2}}{p_{\mathrm{N}_{2} \mathrm{O}_{4}}}$

IGNORE UNITS HERE
Reject []
(b) (i) $p_{\mathrm{NO}_{2}}=0.8 \times 1.1$
$=0.88(\mathrm{~atm})$
and
$p_{N_{2} O_{2}}=0.2 \times 1.1$
$=0.22(\mathrm{~atm})(\mathbf{1})$
$K_{p}=\frac{(0.88)^{2}}{(0.22)}$
$K_{p}=3.52$ (1)
atm (1)
SECOND MARK IS CQ ON PARTIAL PRESSURES AS CALCULATED
(ii) First mark:

$$
X_{N_{2} \mathrm{O}_{4}}=0.10
$$

$X_{\mathrm{NO}_{2}}=0.90$ (1)
Reject B

Second mark:

K_{p} constant or
use of $K_{p}=3.52$ or
use of K_{p} calculated in (b)(i) (1)
Third mark:
Value of P_{T} with some working e.g.
$3.52=\frac{\left(X_{\mathrm{NO}_{2}} \times \mathrm{P}_{\mathrm{T}}\right)^{2}}{X_{\mathrm{N}_{2} \mathrm{O}_{4}} \times \mathrm{P}_{\mathrm{T}}}$
$3.52=\frac{0.81}{0.10} \times \mathrm{P}_{\mathrm{T}}$
$\mathrm{P}_{\mathrm{T}}=0.435$ (atm) (1)
Mark CQ on first and second answers to (b)(ii)
Accept in range 0.43 to 0.44
THIRD MARK NOT AVAILABLE IF K_{p} EXPRESSION
DOES NOT CONTAIN A p ${ }^{2}$ TERM
(c) (i) Increases / gets larger/ gets bigger/ goes up/greater

Reject more
(ii) First mark:

Fraction/quotient/ $\frac{p_{\mathrm{NO}_{2}}^{2}}{p_{\mathrm{N}_{2} \mathrm{O}_{4}}}$ numerator has to increase
(to equal new K_{p}) (1)
Second mark (can only be awarded for an answer that refers to the fraction/quotient above):

EITHER

so shifts to RIGHT hand side (as $p_{\mathrm{NO}_{2}} \uparrow$ and $p_{\mathrm{N}_{2} \mathrm{O}_{4}} \downarrow$)/
goes in forward direction (as $p_{\mathrm{NO}_{2}} \uparrow$ and $p_{\mathrm{N}_{2} \mathrm{O}_{4}} \downarrow$)
OR
so (more) $\mathrm{N}_{2} \mathrm{O}_{4}$ changes to NO_{2}
OR
so (equilibrium) yield of NO_{2} increases (1)
Mark consequentially on "decreases" in (i)
Le Chatelier argument scores (0)
45. (a) (i) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

OR
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
(ii) $K_{W}=\left[{H^{+}}_{(a q)}\right]\left[\mathrm{OH}^{-}(a q)\right]$

OR
$K_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}\right]\left[\mathrm{OH}_{(a q)}{ }\right]$
IGNORE STATE SYMBOLS
If [$\mathrm{H}_{2} \mathrm{O}$] included (0).

$$
\text { Reject } K_{w}=\left[H^{+}\right]^{2}
$$

(iii) $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$

OR
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
OR
in words
Accept $p H=\lg 1 /\left[H^{+}\right]$
(iv) $K_{W}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$5.48 \times 10^{-14}=\left[\mathrm{H}^{+}\right]^{2}(\mathbf{1)}$
$\left[\mathrm{H}^{+}\right]=\sqrt{5.48 \times 10^{-14}}$
$\left[\mathrm{H}^{+}\right]=2.34 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{pH}=6.6(3)(\mathbf{1)}$
correct answer with no working (2)

$$
p H=13.3 / 13.6 \text { scores (0) }
$$

(v) (In pure water)
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
OR
equal concentrations of H^{+}and OH^{-}
(b) (i) $12.5 \square 1$
(ii) 4.8 / 4.9 [no consequential marking from (i)]

Reject 5 or 5.0
(iii) $\quad K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$

OR

$$
\mathrm{K}_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

Reject expressions containing [$\mathrm{H}_{2} \mathrm{O}$]
OR
Reject "HA"
generic equations
(iv) (at half-neutralised point so)
$\mathrm{p} K_{a}=4.8$
Mark CQ on (ii)
Reject just $\mathrm{pH}=4.8$ as already credited in (b)(ii)
OR
$\mathrm{pH}=\mathrm{p} K_{a}(\mathbf{1})$
$\mathrm{K}_{\mathrm{a}}=\operatorname{antilog}{ }_{10}(-4.8)$
$\mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
Mark CQ on $p K a$
Accept if $p K a=4.9, K a=1.3 \times 10^{-5}$
Reject answers to other than 2 s.f.

Must be to two sig figs

CORRECT ANSWER WITH OR WITHOUT WORKING (2)
Reject 2.5×10^{-9} scores (0)
(c) Phenolphthalein:
changes colour (OWTTE) in vertical part of the graph
OR
changes colour within a stated range anywhere from 7 to 11 (1)
Reject if colour change "pink to colourless"
Methyl orange
changes colour at a low(er) pH
OR
has already changed colour

OR

changes colour before the vertical (section) (1)
Allow range for methyl orange of 3 to 6 or colour change takes place below $\mathrm{pH}=7$

Reject just 'methyl orange changes colour outside the vertical range’
[NB There must be a statement about methyl orange for second mark]
46. (a) (i) Liquids are more disordered than solids/ solids are more ordered than liquids/ solids are less disordered than liquids / liquids are less ordered than solids

Accept more ways of arranging energy in a liquid because of translation/rotation energy
Reject just "more ways of arranging energy"
(ii) $(165+217.1-166.5=)+215.6 \mathrm{OR}+216\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$
"+" sign essential
Accept $+(0) .2156 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ OR $+0.216 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Reject $215 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Reject $0.215 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(iii) Yes because

The products include a gas (1)
Accept solid goes to liquid and gas for first mark
One mole/molecule goes to two moles/molecules (1)
1 reactant goes to 2 products does not get $2^{\text {nd }}$ mark
(b) $\Delta \mathrm{S}_{\text {surroundings }}^{\theta}=\frac{-\Delta \mathrm{H}}{\mathrm{T}}$

OR

$$
\frac{-123800}{298}(\mathbf{1})
$$

$=-415 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(\mathbf{1})$
Accept $-0.415 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Accept -415.4 $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Accept final answer with no working (2)
Allow " j " for " J "
Reject full calculator display eg -415.4362416
Reject more than 2 dp e.g. -415.436
(c) (i) $\Delta S_{\text {total }}=-415+216=-199$
or -199.8 or -200$)\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
IGNORE $4^{\text {th }}$ significant figure
Accept - $0.199 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
ALLOW TE from(a)(ii) and (b)
(ii) reactants predominate / equilibrium lies well to the left

OR
Equilibrium completely to the left
ALLOW TE from (c)(i)
(d) (i) $\quad K_{p}=\frac{p_{P C l_{3}} \times p_{C L_{2}}}{p_{P C l_{5}}}$ (1)

IGNORE state symbols or lack of them unless (s) or (l)
Units atm (1)

Accept capital "P"
Accept use of ()
If expression the wrong way up allow second mark if units given as atm^{-1}
Reject use of []
(ii)

Substance	Moles at start	Moles at equilibrium	$\mathrm{P}_{\mathrm{eq}} / \mathrm{atm}$
$\mathrm{PCl}_{5}(\mathrm{~g})$	$\mathbf{0 . 2 0}$ $\mathbf{(1)}$		$\frac{\mathbf{0 . 1 5}}{\mathbf{0 . 2 5}} \times \mathbf{4 . 3 2}$ $=2.592$
$\mathrm{PCl}_{3}(\mathrm{~g})$		$\mathbf{0 . 0 5}$	$\frac{\mathbf{0 . 0 5}}{\mathbf{0 . 2 5}} \times \mathbf{4 . 3 2}$ $=\mathbf{0 . 8 6 4}$
$\mathrm{Cl}_{2}(\mathrm{~g})$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 8 6 4}$	
Total number of moles at equilibrium	$\mathbf{0 . 2 5}$		
All three(1)			
All three(1)			

Allow consequential marking across columns
If moles at eqm are given as 0.025 for $\mathrm{PCl}_{3}(\mathrm{~g})$ and for $\mathrm{Cl}_{2}(\mathrm{~g})$ then $4^{\text {th }}$ column should be 3.24, 0.54 and 0.54
and gets 2 (out of 3)
(iii) $\quad\left(K_{p}=\frac{0.864 \times 0.864}{(2.592)}\right)$
$=0.288$ (atm)
ALLOW TE from di and from dii
Common wrong values above gives 0.090
ALLOW 0.29
Reject 0.3
reject 0.28
(iv) A No change because K_{p} depends only on temperature / number of moles would change in same proportion (1)
B Increase because reaction is endothermic (1)
OR
entropy arguments
If both changes correct but no explanations then 1 (out of 2)
47. (a) (i) $\quad K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}$ (1
mol dm ${ }^{-3}$ (1)
If $\mathrm{H}_{2} \mathrm{O}$ is included as denominator then allow only the $2^{\text {nd }}$
mark if no units suggested

Accept $K_{a}=10^{-p K a}$
(b) A solution which does not change its pH value (significantly) (1)

May be shown using an equation
When some/small amount of acid or alkali is added (1)
(c) Acting as a base because it is accepting a proton (to form $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$)
(d) (i) Before race $7.4=6.5-\log \frac{\text { [acid] }}{[\text { base }]}$
$\log \frac{[\text { acid] }}{\text { [base] }}=-0.9 \mathbf{(1)}$

$$
\frac{[\text { acid }]}{[\text { base }]}=0.126(\mathbf{1})
$$

Accept 0.13
Reject 0.12
(ii) Before race

$$
\left[\mathrm{CO}_{2}\right]=0.126 \times 0.0224=2.82 \times 10^{-3}
$$

OR

$$
\begin{equation*}
2.52 \times 10^{-2}-2.24 \times 10^{-2}=2.8 \times 10^{-3} \tag{1}
\end{equation*}
$$

(iii) Hypothesis I would result in an increase in $\left[\mathrm{CO}_{2}\right] /\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}+\mathrm{HCO}_{3}^{-}\right]$
OR
Hypothesis II would produce greater acidity without additional $\left[\mathrm{CO}_{2}\right] /\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}+\mathrm{HCO}_{3}^{-}\right](\mathbf{1})$

The table shows a fall in $\left[\mathrm{CO}_{2}\right]$ / $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}+\mathrm{HCO}_{3}{ }^{-}\right]$ and therefore Hypothesis II must be favoured. (1)
48. C
49. C
50. A
51. C
52. (a) C
(b) D
(c) B
53. (a) A 1
(b) D 1
(c) C 1
54. (a) methyl butanoate

Accept Methyl butaneoate
Reject 'an' missing
(b) the other three substances can form
intermolecular hydrogen bonds with themselves but the ester cannot.
Reject Discussion of London Forces
(c) Hydrolysis
(d) QWC

Must cover advantages and disadvantages. Must not be contradictory
Advantages to manufacturers: (any two)

- not dependent on weather, seasons etc
- consistent taste /concentration/more consistent
- quality
- or alternative ideas

Disadvantages to consumers : (any two)

- some people put off by 'non-natural’ food
- may not taste the same as natural product which may contain other impurities
- unable to describe the product as organic
or alternative ideas
Reject cost with no justification
(e) $\quad \mathrm{Kc}=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}(\mathrm{l})\right]\left[\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})\right]}{\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOCH}_{3}(\mathrm{l})\right]\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]}$

Accept eq subscripts

butanoic acid $=4.4 / 88=$ methanol
ester (methyl butanoate)
water
all four equilibrium moles $=\mathbf{(1)}$
Conc at equilibrium $=$ equilibrium moles $\div 0.030$ (1)

$$
\mathrm{Kc}=\frac{1.67 \times 1.67}{1.67 \times 31.7}(\mathbf{1})=0.053(\mathbf{1})
$$

ignore significant figures unless value given to 1 s.f.
The units cancel because both the top and bottom of the fraction have units of concentration squared.
Or same number of moles on both sides of the equation (1)
Reject absence of square brackets
55. (a) Value of equilibrium constant increases (1)
(b) QWC

If the equilibrium constant increases then more products will be formed (1) And the position of equilibrium will move to the right (1)
56. (a) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Accept state symbols omitted
(b) (i) Positive because a gas is given off (1)
which is more disordered and so has more entropy (1)
(ii) Positive because the reaction is exothermic (1) and $=-\Delta H / T(\mathbf{1})$
(iii) Positive because the reaction occurs / total entropy change is the sum of the two positive values above.
(c) (i) Surface coated with magnesium oxide (which would react to form water rather than hydrogen).
(ii) QWC

Initial number of moles of $\mathrm{HCl}=20 \times 1 / 1000=0.02$
Number of moles of $\mathrm{Mg}=0.1 / 24=0.00417$ (1)
number of moles of HCl which reacts is 0.00834 (1)
Therefore number of moles of HCl left $=0.01166$ (1) Ignore sig figs
so the concentration nearly halves which would significantly reduce the rate and so make the assumption that the initial rate is proportional to $1 /$ time invalid / inaccurate. (1)
Increase the volume of acid to (at least) $50 \mathrm{~cm}^{3}$ (1)
Or measure the time to produce less than the full amount of gas

Or use a smaller piece of magnesium. (1)
(iii) Energy given out $=467000 \times 0.1 / 24 \mathrm{~J}=1946 \mathrm{~J}$
$20 \times 4.18 \times \Delta \mathrm{T}=1946$ (1)

$$
\Delta \mathrm{T}=23.3^{(\mathrm{o})} \mathbf{(1)}
$$

Accept units of degrees celsius or Kelvin
This temperature change would significantly increase the rate of the reaction (1)
Carry out the reaction in a water bath of constant temperature/use a larger volume of more dilute acid (1)
(iv) At 329 time $4 \mathrm{~s} 1 /$ time $=0.25 \mathrm{~s}^{-1} \ln$ (rate) $=-1.39$ (1)

At 283 time 124s $1 /$ time $=0.00806 \mathrm{~s}^{-1} \ln ($ rate $)=-4.82$ (1)
[graph to be drawn]
Plot line with new gradient $=-3.43 / 0.00049$

$$
=-7000(\mathbf{1})
$$

Accept -6800 to -7200
Activation energy $=+7000 \times 8.31$
$=+58.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}$
(v) QWC

Rate of reaction reduced because less surface area in contact with the acid. (1)
(vi) Any two

- Repeat the experiment at each of the temperatures
- obtain an initial rate eg by measuring the volume of gas given off before the reaction is complete.
- Other sensible suggestions.
(vii) The rate should be lower, since ethanoic acid is a weaker acid (compared to hydrochloric acid) and so there will be a lower concentration of hydrogen ions present.

57. QWC

Answer must be given in a logical order, addressing all the points using precise terminology

- Collision frequency increases as particles moving more quickly (1)
- More collisions have sufficient energy to overcome activation energy / more molecules on collision have energy \geq activation energy (1)
- A greater proportion of collisions result in reaction (1)
- Collision energy has greater effect (1)
- Homogeneous all in same phase and heterogeneous in different phases / gas and solid (1)
- No need to separate products from catalyst (1)

Reject more collisions
Reject more successful collisions

