1 This question is about the equilibrium reaction between hydrogen and carbon dioxide.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$
 $\Delta H^{\oplus} = +40 \text{ kJ mol}^{-1}$

What effect would the following changes have on the rate of reaction and the yield of carbon monoxide?

(a) **Increase** in temperature.

(1)

		Rate	Yield of CO
×	Α	increase	increase
X	В	increase	decrease
X	C	increase	no change
X	D	no change	decrease

(b) **Increase** in pressure.

(1)

		Rate	Yield of CO
×	Α	increase	increase
×	В	increase	decrease
X	C	increase	no change
×	D	no change	no change

2	Carbon	monoxide and	d chlorine react to	ogether and read	ch equi	ilibrium:	
			CO($g) + Cl_2(g) \rightleftharpoons CO$	Cl ₂ (g)		
		essure of the s g statements	system is then in e is correct?	creased at const	ant ter	mperature, wh	ich of the
	⊠ A	The equilibriu	m moves to the le	eft and K_p decrea	ses.		
	⊠ B	The equilibriu	m moves to the ri	ight and K_p incre	ases.		
	⊠ C	The equilibriu	m moves to the ri	ight, then back t	o the le	eft and K_p rema	ains the same.
	⊠ D	The equilibriu	m moves to the ri	ight and K_p rema	ins the	same.	
					(Tot	al for Questic	on = 1 mark)
3			l orange is a weal n for its dissociat	•	-	esented by the	e formula
		HA(aq)	\rightleftharpoons	A-(aq)	+	H ⁺ (aq)	
	Colour	: Red		Yellow			
			tions, at equilibrit olume of dilute s			•	
	⊠ A	change from	yellow to red.				
	⊠ B	change from	yellow to orange	. .			
	⊠ C	change from	yellow to orange	and then to rec	l.		
	⊠ D	not change.					
					(To	otal for Quest	ion = 1 mark)

4	The following system was allowed to reach equilibrium at 300 °C.	
	2HI(g) \rightleftharpoons H ₂ (g) + I ₂ (g) Δ H = -53.0 kJ mol ⁻¹ Colourless Colourless Purple	
	(a) What would you see if the equilibrium mixture was cooled to 250 $^{\circ}\text{C}$?	(1)
	■ A No visible change.	(1)
	■ B The colour gets lighter.	
	☑ C The mixture turns colourless.	
	■ D The mixture goes a darker purple.	
	(b) The equilibrium mixture at 300 °C was compressed in a gas syringe to occup smaller volume. What would be seen immediately?	oy a (1)
	■ A No visible change.	(-)
	■ B The colour gets lighter.	
	□ The mixture turns colourless.	
	☑ D The mixture goes a darker purple.	
	(Total for Question =	2 marks)
5	A solution of iodine in aqueous potassium iodide is brown. The following equilibexists in this solution.	rium
	$I_{2}(aq) + H_{2}O(I) \rightleftharpoons IO^{-}(aq) + I^{-}(aq) + 2H^{+}(aq)$	
	Brown Colourless	
	What would be the effect, if any, on the colour of the solution if five drops of diludedium hydroxide solution were added to 5 cm ³ of the iodine solution?	te
	🛮 A No visible change.	
	■ B The colour gets lighter.	
	☐ C The mixture turns colourless.	

 $\ \square$ **D** The mixture goes a darker colour.

6	Methane hydrate is found on continental shelves deep in oceans. It forms methane
	in an endothermic equilibrium reaction, which may be represented as

$$CH_4.6H_2O(s) \rightleftharpoons CH_4(g) + 6H_2O(l)$$

(a)	Which of the following changes would increase the equilibrium yield of
	methane?

(1)

- ☑ A Increasing the temperature and decreasing the pressure.
- **B** Decreasing both the temperature and the pressure.
- ☑ C Increasing both the temperature and the pressure.
- D Decreasing the temperature and increasing the pressure.
- (b) Which of the following would **decrease** the value of the equilibrium constant, K_p , for the above equilibrium?

(1)

- ☑ A Decreasing the pressure
- ☑ B Increasing the pressure
- ☑ C Decreasing the temperature
- □ D Increasing the temperature

7	Methane hydrate is found on continental shelves deep in oceans. It forms methane
	in an endothermic equilibrium reaction, which may be represented as

(a) Which of the following changes would **decrease** the equilibrium yield of

$$CH_4.6H_2O(s) \rightleftharpoons CH_4(g) + 6H_2O(l)$$

	me	ethane?
X	Α	Decreasing the temperature and decreasing the pressure.

- **B** Increasing the temperature and decreasing the pressure.
- ☑ C Decreasing the temperature and increasing the pressure.
- **D** Increasing the temperature and increasing the pressure.
- (b) Which of the following would **increase** the value of the equilibrium constant, $K_{p'}$ for the above equilibrium?

(1)

(1)

- A Decreasing the pressure
- **B** Increasing the pressure
- C Decreasing the temperature
- D Increasing the temperature

8 W	hich	of the following cannot alter the position of a chemical equilibrium?
[⊠ A	Increasing the amount of catalyst
[В	Increasing the reactant concentration
[⊠ C	Increasing the temperature
[X D	Increasing the total pressure
		(Total for Question = 1 mark)
9 CO(g)+ 2	$2H_2(g) \rightleftharpoons CH_3OH(g) \Delta H = -91 \text{ kJ mol}^{-1}$
Th	e co	nditions which would produce the greatest yield of methanol are
×	A	high pressure and high temperature.
×	В	high pressure and low temperature.
×	C	low pressure and low temperature.
X	D	low pressure and high temperature.
		(Total for Question = 1 mark)

	10	(a)	For the equilibriu	ım reaction betwee	n hydrogen a	nd iodine
--	----	-----	--------------------	--------------------	--------------	-----------

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

increasing the pressure of the system

(1)

- A has no effect on the rate or the position of equilibrium.
- **B** increases the rate but does not affect the position of equilibrium.
- **C** increases the rate and shifts the equilibrium to the right.
- **D** increases the rate and shifts the equilibrium to the left.
- (b) The equation for the equilibrium reaction between hydrogen and iodine may also be written as

$$\frac{1}{2}H_{2}(g) + \frac{1}{2}I_{2}(g) \rightleftharpoons HI(g)$$

This change to the equation, compared to that in part (a),

(1)

- A has no effect on the value of the equilibrium constant.
- **B** halves the value of the equilibrium constant.
- Square roots the value of the equilibrium constant.

11	Th	e fi	rst stage in the manufacture of nitric acid is the oxidation of ammonia:	
			$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g) \Delta H = -906 \text{ kJ mol}^{-1}$	
			modern industrial plants this reaction is carried out at a pressure of around tm. Which of the following statements is incorrect ? The raised pressure	(1)
	X	A	helps push the reactants through the reactor.	
	X	В	shifts the position of equilibrium to the right.	
	X	C	increases the cost of the reactor.	
	X	D	increases the energy cost of this part of the process.	
		-	platinum-rhodium alloy catalyst is used in this reaction. Which of the following tements is incorrect ? The catalyst	(1)
	\times	Α	lowers the activation energy of the reaction.	
	X	В	has no effect on the equilibrium constant for the reaction.	
	X	C	alters the enthalpy change of the reaction.	
	X	D	reduces the energy cost of this part of the process.	
			e operating temperature of this reaction is about 900°C. The use of a high operature	(1)
	\times	Α	increases the rate of the reaction and the equilibrium yield.	
	X	В	increases the rate of the reaction and decreases the equilibrium yield.	
	X	C	decreases the rate of the reaction and the equilibrium yield.	
	X	D	decreases the rate of the reaction and increases the equilibrium yield.	
			(Total for Question = 3 mark	(s)

12 An	important step in the production of sulfuric acid is the oxidation of sulfur dioxide. $2SO_2(g) + O_2(g) \implies 2SO_3(g) \Delta H = -196 \text{ kJ mol}^{-1}$
Which SO ₃ ?	n of the conditions below is best suited to produce a high yield of sulfur trioxide,
⊠ A	1 atm pressure and 800 °C.
В	2 atm pressure and 800 °C.
⊠ C	1 atm pressure and 400 °C.
⊠ D	2 atm pressure and 400 °C.
	(Total for Question = 1 mark)
13 Wh	nich of these will not improve the overall yield of the Haber process?
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ ΔH 92 kJ mol ⁻¹
X	A Increasing the pressure.
\times	B Liquefying then removing the ammonia from the reaction.
×	C Increasing the temperature.
\times	D Recycling unreacted nitrogen and hydrogen.
	(Total for Question 1 mark)
14 1,2-0	lichloroethane decomposes in the presence of a catalyst.
	$CH_2ClCH_2Cl(g) \rightleftharpoons CH_2=CHCl(g) + HCl(g)$ $\Delta H = +51 \text{ kJ mol}^{-1}$
	ch of the following would result in an increase in the equilibrium yield of coethene?
⊠ A	Increasing the temperature.
⊠ B	Increasing the pressure.
\boxtimes C	Increasing the surface area of the catalyst.
⊠ D	Changing the catalyst to a more efficient one.

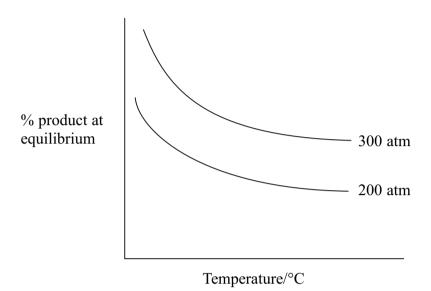
15 In the equilibrium below, what effect would the changes described have on the system	15	In	the	eauilibrium	below.	what	effect	would	the	changes	described	have	on	the	svstem	1?
---	----	----	-----	-------------	--------	------	--------	-------	-----	---------	-----------	------	----	-----	--------	----

$$2H_2S(g) + SO_2(g) \Longrightarrow 3S(s) + 2H_2O(g)$$

 ΔH is negative

(a) Increase in temperature

(1)


- \square **A** increase rate, decrease yield
- **■** B increase rate, increase yield
- C decrease rate, decrease yield
- **D** decrease rate, increase yield
- (b) Decrease in pressure

(1)

- **B** increase rate, increase yield
- C decrease rate, decrease yield
- \square **D** decrease rate, increase yield

16	6 Brown nitrogen dioxide, NO_2 , exists in equilibrium with colourless dinitrogen tetroxide, N_2O_4 .						
		$2NO_2(g) \rightleftharpoons N_2O_4(g) \Delta H \qquad 57.2 \text{ kJ mol}^{-1}$ brown colourless					
		pressure is increased. When equilibrium is restored, the appearance of the ture of gases will be	(1)				
		colourless.	(1)				
	\boxtimes B	unchanged.					
		paler brown.					
	\boxtimes D	darker brown.					
		temperature is increased. When equilibrium is restored, the appearance of the ture of gases will be	(1)				
	\mathbf{X} A	colourless.	(1)				
	⊠ B	unchanged.					
		paler brown.					
	\square D	darker brown.					
		(Total for Question 2 marks	i)				

17 The graph below shows the yield of product in a gaseous equilibrium at different temperatures and pressures.

The forward reaction in the equilibrium is

- **A** exothermic, and the number of moles of gas is increasing.
- **B** endothermic, and the number of moles of gas is increasing.
- C exothermic, and the number of moles of gas is decreasing.
- **D** endothermic, and the number of moles of gas is decreasing.