1 The Ostwald Process is a method for making nitric acid. The equation for the first stage of this process is

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-905 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(a) The equilibrium yield of nitrogen monoxide, NO, is increased byA increasing both the pressure and the temperature.B decreasing both the pressure and the temperature.C decreasing the pressure and increasing the temperature.D increasing the pressure and decreasing the temperature.
(b) For this stage of the process, the catalyst is an alloy of platinum and rhodium. A pressure of between 4 and 10 atm and a temperature of 1150 K are used. Unreacted reactants are recycled.

Which one of the following changes will affect the value of the equilibrium constant, K_{p} ?A Changing the composition of the platinum-rhodium catalyst.B Increasing the pressure above 10 atm .C Decreasing the temperature below 1150 K .D Not recycling unreacted reactants.

2 lodine is soluble in both water and hexane. If iodine is added to a mixture of the two solvents, then the following equilibrium is set up.

$$
\mathrm{I}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{I}_{2}(\text { hexane })
$$

The equilibrium constant, known as the partition coefficient, is 85.
The density of hexane is $0.66 \mathrm{~g} \mathrm{~cm}^{-3}$. The density of water is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$.
Which of the following diagrams is correct for this system at equilibrium?

A

C

■ D

3 What are the units of the equilibrium constant $\left(K_{c}\right)$ for the hypothetical reaction below?

$$
2 \mathrm{~A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) \rightleftharpoons 4 \mathrm{C}(\mathrm{aq})+\mathrm{D}(\mathrm{aq})
$$

A $\mathrm{mol}^{2} \mathrm{dm}^{-9}$
B $\mathrm{mol}^{-2} \mathrm{dm}^{9}$
C $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
D $\mathrm{mol}^{-2} \mathrm{dm}^{6}$

$$
\text { (Total for Question = } 1 \text { mark) }
$$

4 This question is about the reversible reaction below.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

(a) A chemist investigating this reaction started with 10 moles of NO_{2} and allowed the system to reach equilibrium. If 3 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ are formed, the number of moles of NO_{2} at equilibrium isA 8.5B 7C 6D 4
(b) Under different conditions, 40% of the moles present at equilibrium is $\mathrm{N}_{2} \mathrm{O}_{4}$. If the total pressure of the system is 2.0 atm , the numerical value of the equilibrium constant, K_{p} isA 0.56B 0.67C 1.5D 1.8

5 Ammonium chloride decomposes on heating:

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

The equilibrium constant, $K_{p^{\prime}}$ for this reaction equalsA $P_{\mathrm{NH}_{3}} \times \mathrm{P}_{\mathrm{HCl}}$
\square B $\frac{1}{P_{\mathrm{NH}_{3}} \times P_{\mathrm{HCl}}}$
$\square \mathrm{C} \frac{P_{\mathrm{NH}_{3}} \times P_{\mathrm{HCl}}}{P_{\mathrm{NH}_{4} \mathrm{Cl}}}$
∇ D $\frac{P_{\mathrm{NH}_{4} \mathrm{Cl}}}{P_{\mathrm{NH}_{3}} \times P_{\mathrm{HCl}}}$
(Total for Question = 1 mark)

6 Consider the equilibrium below.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})
$$

(a) An increase in pressure by a factor of 2 willA quadruple K_{p}.
B double K_{p}.C have no effect on K_{p}.D halve K_{p}.
(b) The units of K_{p} areA atm ${ }^{-2}$B atm ${ }^{-1}$C atmD atm^{2}

7 Methanol is produced in the equilibrium reaction

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \quad \Delta H \quad 18.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Addition of more hydrogen to the equilibrium mixture at constant temperature
A increases the equilibrium yield of methanol.
B decreases the equilibrium yield of methanol.
C increases the value of K_{p}.
D decreases the value of K_{p}.

(Total for Question 1 mark)

8 The equation for the equilibrium between $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ can be written in two ways.

$$
\begin{gathered}
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \text { Equilibrium constant } K_{\mathrm{c}} \\
\text { or } \\
\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 1 / 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \text { Equilibrium constant } \quad K_{\mathrm{c}}^{\prime}
\end{gathered}
$$

Which expression is correct?
0 A $\quad K_{\mathrm{c}} \quad K_{\mathrm{c}}^{\prime}$B $K_{\mathrm{c}}\left(K_{\mathrm{c}}^{\prime}\right)^{2}$C $\quad K_{\mathrm{c}} \quad 2\left(K_{\mathrm{c}}^{\prime}\right)$D $K_{\mathrm{c}} \quad 1 / 2 K_{\mathrm{c}}^{\prime}$
94.0 mol of methanoic acid are reacted with 6.0 mol of ethanol.

$$
\mathrm{HCOOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \rightleftharpoons \mathrm{HCOOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The equilibrium mixture contains 3.0 mol of $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$.
The equilibrium constant, K_{c}, for the reaction isA 0.33B 1.0C 3.0
D 4.0
(Total for Question 1 mark)

10 This question is about the equilibrium reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which statement is not correct?
A The units of K_{p} are atm^{-2}.
B $\quad K_{\mathrm{p}}$ increases as temperature is decreased.
C $\quad K_{\mathrm{p}}$ increases when the pressure increases.
D $\quad K_{\mathrm{p}}$ increases when the total entropy change, $\Delta S_{\text {total }}$, increases.
(Total for Question = 1 mark)

11 The equation for the synthesis of methanol is

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

At equilibrium, when the temperature is 340 K , the total pressure is 20 atm . The moles of each component present at equilibrium are shown in the table below.

Formula	Equilibrium moles / mol	Mole fraction
CO	0.15	0.23
H_{2}	0.32	
$\mathrm{CH}_{3} \mathrm{OH}$	0.18	0.28

(a) The mole fraction of hydrogen in the equilibrium mixture isA 0.23B 0.46C 0.49
D 0.92
(b) The numerical value for the equilibrium partial pressure of the carbon monoxide, in atmospheres, isA 3.0B 4.6C 5.0D 9.2
(c) Units for the equilibrium constant, $K_{\mathrm{p}^{\prime}}$ for this reaction areA no unitsB atmC atm ${ }^{-1}$D atm^{-2}

12 What are the units of $\boldsymbol{K}_{\mathrm{c}}$ for the following equilibrium?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

\square A atmB atm ${ }^{1}$
$\square \mathbf{C \quad d m}{ }^{3} \mathrm{~mol}^{1}$D $\mathrm{mol} \mathrm{dm}^{3}$
(Total for Question 1 mark)

13 Consider the equilibrium

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{PCl}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})
$$

Which of the following is true when the total pressure of the system is increased at constant temperature?

		Value of K_{p}	M ole fraction of $\mathrm{PCl}_{5}(\mathrm{~g})$
\square	A	decreases	decreases
\square	B	unaltered	increases
\square	C	decreases	increases
\square	D	unaltered	unaltered

14 Iron and steam at high temperature react in a closed vessel to give an equilibrium mixture

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

Which of the following is the correct expression for K_{p} ?
$\square \quad \mathbf{A} \quad K_{\mathrm{p}}=\frac{P_{\mathrm{H}_{2}}}{P_{\mathrm{H}_{2} \mathrm{O}}}$
$\square \quad$ B $\quad K_{\mathrm{p}}=\frac{P_{\mathrm{Fe}_{3} \mathrm{O}_{4}} P_{\mathrm{H}_{2}}^{4}}{P_{\mathrm{Fe}}^{3} P_{\mathrm{H}_{2} \mathrm{O}}^{4}}$
$\square \quad \mathbf{C} \quad K_{\mathrm{p}}=\frac{P_{\mathrm{H}_{2}}^{4}}{P_{\mathrm{H}_{2} \mathrm{O}}^{4}}$
$\square \quad$ D $\quad K_{\mathrm{p}}=P_{\mathrm{H}_{2}}^{4}$

