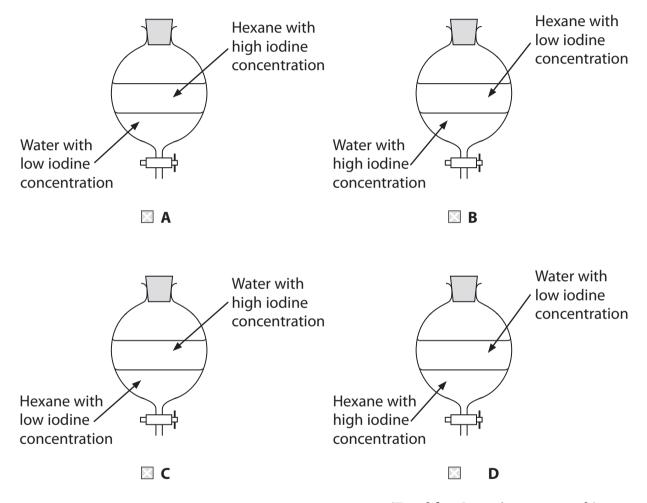
1		wald Process is a method for making nitric acid. The equation for the first stage process is	?
		$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$ $\Delta H = -905 \text{ kJ mol}^{-1}$	
	(a) Th	e equilibrium yield of nitrogen monoxide, NO, is increased by	(1)
	⊠ A	increasing both the pressure and the temperature.	(1)
	⊠ B	decreasing both the pressure and the temperature.	
	⊠ C	decreasing the pressure and increasing the temperature.	
	⊠ D	increasing the pressure and decreasing the temperature.	
	А	r this stage of the process, the catalyst is an alloy of platinum and rhodium. oressure of between 4 and 10 atm and a temperature of 1150 K are used. are acted reactants are recycled.	
		nich one of the following changes will affect the value of the equilibrium nstant, K_p ?	(1)
	⊠ A	Changing the composition of the platinum-rhodium catalyst.	(1)
	⋈ B	Increasing the pressure above 10 atm.	
	⊠ C	Decreasing the temperature below 1150 K.	
	⊠ D	Not recycling unreacted reactants.	
		(Total for Question = 2 mark	s)


2 lodine is soluble in both water and hexane. If iodine is added to a mixture of the two solvents, then the following equilibrium is set up.

$$I_2(aq) \rightleftharpoons I_2(hexane)$$

The equilibrium constant, known as the partition coefficient, is 85.

The density of hexane is 0.66 g cm⁻³. The density of water is 1.00 g cm⁻³.

Which of the following diagrams is correct for this system at equilibrium?

(Total for Question = 1 mark)

3		hat a	are the units of the equilibrium constant (K_c) for the hypothetical reaction ?	
			$2A(aq) + B(aq) \rightleftharpoons 4C(aq) + D(aq)$	
	×	Α	$mol^2 dm^{-9}$	
	×	В	$mol^{-2} dm^9$	
	X	C	$mol^2 dm^{-6}$	
	X	D	mol ⁻² dm ⁶	
			(Total for Question = 1 mark)	
	4	Thi	s question is about the reversible reaction below.	
			$2NO_2(g) \rightleftharpoons N_2O_4(g)$	
		(a)	A chemist investigating this reaction started with 10 moles of NO_2 and allowed the system to reach equilibrium. If 3 moles of N_2O_4 are formed, the number of moles of NO_2 at equilibrium is	(1)
		×	A 8.5	
		×	B 7	
		×	C 6	
		X	D 4	
		(b)	Under different conditions, 40% of the moles present at equilibrium is N_2O_4 . If the total pressure of the system is 2.0 atm, the numerical value of the equilibrium constant, K_p is	(1)
		X	A 0.56	
		×	B 0.67	
		×	C 1.5	
		×	D 1.8	

(Total for Question = 2 marks)

5 Ammonium chloride decomposes on heating:

$$NH_{4}Cl(s) \rightleftharpoons NH_{3}(g) + HCl(g)$$

The equilibrium constant, $K_{\rm p}$, for this reaction equals

- \triangle A $P_{NH_3} \times P_{HCI}$
- \square **B** $\frac{1}{P_{\text{NH}_3} \times P_{\text{HCI}}}$
- $\square \quad \mathbf{C} \quad \frac{P_{\mathrm{NH_3}} \times P_{\mathrm{HCI}}}{P_{\mathrm{NH_4CI}}}$
- $\square \quad \mathbf{D} \quad \frac{P_{\mathrm{NH_4CI}}}{P_{\mathrm{NH_3}} \times P_{\mathrm{HCI}}}$

(Total for Question = 1 mark)

6 Consider the equilibrium below.

$$CO(g) + Cl_2(g) \Longrightarrow COCl_2(g)$$

(a) An increase in pressure by a factor of 2 will

(1)

- \boxtimes **A** quadruple K_p .
- \square **B** double K_p .
- \square **C** have no effect on K_p .
- \square **D** halve K_p .
- (b) The units of K_p are

(1)

- \triangle **A** atm⁻²
- \boxtimes **B** atm⁻¹
- C atm
- \square **D** atm²

(Total for Question 2 marks)

7 Methanol is produced in the equilibrium reacti
--

$$2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$$
 ΔH 18.3 kJ mol⁻¹

Addition of more hydrogen to the equilibrium mixture at constant temperature

- **B** decreases the equilibrium yield of methanol.
- \square **C** increases the value of K_p .
- \square **D** decreases the value of K_p .

(Total for Question 1 mark)

8 The equation for the equilibrium between $NO_2(g)$ and $N_2O_4(g)$ can be written in two ways.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$
 Equilibrium constant K_c

or

$$NO_2(g) \rightleftharpoons \frac{1}{2}N_2O_4(g)$$
 Equilibrium constant K'_c

Which expression is correct?

- \square A K_c K'_c
- \square **B** $K_{\rm c}$ $(K'_{\rm c})^2$
- \square **C** K_c $2(K'_c)$
- \square **D** $K_{\rm c}$ $\frac{1}{2}K'_{\rm c}$

(Total for Question 1 mark)

9 4.0 mol of methanoic acid are reacted with 6.0 mol of ethanol.

$$HCOOH(1) + C_2H_5OH(1) \rightleftharpoons HCOOC_2H_5(1) + H_2O(1)$$

The equilibrium mixture contains 3.0 mol of HCOOC₂H₅.

The equilibrium constant, K_c , for the reaction is

- **⋈ B** 1.0
- **C** 3.0
- **D** 4.0

(Total for Question 1 mark)

10 This question is about the equilibrium reaction

$$N_2(g) + 3H_2(g) \implies 2NH_3(g) \quad \Delta H = -92 \text{ kJ mol}^{-1}$$

Which statement is **not** correct?

- \triangle **A** The units of K_p are atm⁻².
- \square **B** K_p increases as temperature is decreased.
- \square **C** K_p increases when the pressure increases.
- \square **D** K_p increases when the total entropy change, ΔS_{total} , increases.

(Total for Question = 1 mark)

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

At equilibrium, when the temperature is 340 K, the total pressure is 20 atm. The moles of each component present at equilibrium are shown in the table below.

Formula	Equilibrium moles / mol	Mole fraction
СО	0.15	0.23
H ₂	0.32	
CH ₃ OH	0.18	0.28

(a)	The mole	fraction	of hydro	ogen in	the equ	uilibrium	mixture	is
-----	----------	----------	----------	---------	---------	-----------	---------	----

(1)

- **B** 0.46
- **◯ C** 0.49
- ☑ D 0.92
- (b) The numerical value for the equilibrium partial pressure of the carbon monoxide, in atmospheres, is

(1)

- **△ A** 3.0
- **B** 4.6
- **C** 5.0
- **D** 9.2
- (c) Units for the equilibrium constant, $K_{\rm p}$, for this reaction are

(1)

- A no units
- **B** atm
- \square C atm⁻¹
- \square **D** atm⁻²

12 What are the units of K_c for the following equilibrium?

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$

- \triangle A atm
- \boxtimes **B** atm¹
- \square **C** dm³ mol ¹
- \square **D** mol dm³

(Total for Question 1 mark)

13 Consider the equilibrium

$$Cl_2(g) + PCl_3(g) \implies PCl_5(g)$$

Which of the following is true when the total pressure of the system is increased at constant temperature?

		Value of K_p	Mole fraction of PCl ₅ (g)
X	A	decreases	decreases
X	В	unaltered	increases
X	C	decreases	increases
X	D	unaltered	unaltered

(Total for Question = 1 mark)

14 Iron and steam at high temperature react in a closed vessel to give an equilibrium mixture

$$3Fe(s) + 4H_2O(g) \implies Fe_3O_4(s) + 4H_2(g)$$

Which of the following is the correct expression for K_p ?

$$\square \quad \mathbf{A} \quad K_{\mathbf{p}} = \frac{P_{\mathbf{H}_2}}{P_{\mathbf{H}_2\mathbf{O}}}$$

$$\square \quad \mathbf{C} \quad K_{\mathbf{p}} = \frac{P_{\mathrm{H}_2}^4}{P_{\mathrm{H}_2\mathrm{O}}^4}$$

$$\square \quad \mathbf{D} \quad K_{\mathbf{p}} = P_{\mathbf{H}_2}^4$$

(Total for Question = 1 mark)