Question Number	Correct Answer	Reject	Mark
1(a)(i)	Mass of ethanoic acid $=0.04 \times 60.1$ $\begin{equation*} =(2.404 \mathrm{~g}) \tag{1} \end{equation*}$ Volume of ethanoic acid $=2.404 \div$ $1.049=$ $\begin{equation*} 2.2917=2.3\left(\mathrm{~cm}^{3}\right) \tag{1} \end{equation*}$ Correct answer with no working Ignore SF except only one ALLOW 60.0 for molar mass which gives mass 2.4 and volume 2.288 $\begin{equation*} =2.3 \mathrm{~cm}^{3} \tag{2} \end{equation*}$ OR First step $1.049 \div 60 / 60.1$ to find number of moles in $1 \mathrm{~cm}^{3}=0.017$ $\begin{equation*} \text { Then volume }=0.04 \div 0.017 \tag{1} \end{equation*}$ $=2.3529\left(\mathrm{~cm}^{3}\right)$ But note, if whole calculation done on calculator, 60 gives 2.2879 and 61 gives 2.2917. If units given, they must be correct, but penalise wrong units only once here.		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ (a)(ii)	Syringe	ALLOW	
Burette			
Graduated/adjustable pipette			

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ (a)(iii)	To prevent... evaporation/vapour escaping water vapour entering OR To maintain a closed system OR To maintain a closed environment ALLOW To prevent: air oxidizing the alcohol reaction with air OR Due to volatility (of chemicals) IGNORE I.gas escaping ...HCl escaping	$\mathbf{1}$	

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 1 \tag{1}\\ & (\mathrm{a})(\mathrm{iv}) \end{align*}$	First and second mark Phenolphthalein From colourless to (pale) pink/red ALLOW Other indicators with $\mathrm{pK}_{\text {in }}$ in range 7.5 - 10 Some examples are: Thymol blue ((base)) (yellow to blue) Phenol red (yellow to red) Thymolphthalein (colourless to blue) Second mark depends on correct indicator except bromothymol blue, which is incorrect but very close to range so allow colour yellow to blue. Third mark Sodium ethanoate is (slightly) alkaline OR Ethanoic acid is a weak acid OR Phenolphthalein pH range coincides with vertical section of the pH /titration curve OR Titration of weak acid with strong base OR Neutralisation/equivalence point is at 8$10 /$ any number between 8 and 10. OR $\mathrm{pK} \mathrm{K}_{\text {in }}+/-1$ lies within vertical region Third mark is independent	Litmus/universal indicator Pink to colourless Thymol blue (acid) Phenyl red Methyl red	3

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 ~ (b) (i) ~} & \begin{array}{l}\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightleftharpoons \\ \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}\end{array} & & \mathbf{1} \\ & \text { ALLOW } & & \\ & \text { Single arrow } & & \\ & -\mathrm{CO}_{2} \mathrm{H} \\ -\mathrm{C}_{2} \mathrm{H}_{5} \\ \text { Displayed formulae } \\ \text { IGNORE state symbols even if incorrect }\end{array}\right]$

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 1 \tag{1}\\ & \hline \text { (b) (ii) } \end{align*}$	Volume of alkali reacting with ethanoic acid $=77.1-11.7=65.4 \mathrm{~cm}^{3}$ Moles of ethanoic acid $=\frac{65.4 \times 0.200}{1000}$ $\begin{equation*} =0.01308 / 1.308 \times 10^{-2}(\mathrm{~mol}) \tag{1} \end{equation*}$ Correct answer no working (2) I gnore SF except 1 Allow internal TE for use of Moles of ethanoic acid $=\frac{77.1 \times 0.200}{1000}$ $=0.01542 / 1.542 \times 10^{-2}(\mathrm{~mol}) \quad \max (1)$		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	Number of moles of ethanol =		
(b)(iii)	$0.01308 / 1.308 \times 10^{-2}(\mathrm{~mol})$ TE same as (ii)	$\mathbf{1}$	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$			
$\mathbf{(b) (i v) ~}$	Number of moles of ethyl ethanoate		$\mathbf{1}$
	$=0.0400-0.01308=0.02692(\mathrm{~mol})$		
	Allow TE from (ii)/(iii) for example		

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 1 \\ & (b)(v) \end{aligned}$	$\begin{align*} \mathrm{K}_{\mathrm{c}} & =\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{CH}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]} \tag{1}\\ & =\frac{0.02692 \times 0.02692}{0.01308 \times 0.01308} \\ & =4.23579=4.24 \tag{1} \end{align*}$ Ignore SF except one Allow TE from (ii), (iii) and (iv) for example 0.01542 etc gives 2.54		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ $\mathbf{(b) (v i) ~}$	The units cancel		$\mathbf{1}$
	OR There are the same numbers of moles of reactants and products		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ $\mathbf{(b) (v i i)}$	(Concentrated) hydrochloric acid contains water		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ (c)(i)	First test tube esterification		
	OR addition/elimination ALLOW Condensation (1)		
	Second test tube (acid) hydrolysis	(1)	Alkaline hydrolysis followed by acidification

Question Number	Correct Answer	Reject	Mark
$\begin{array}{\|l} \hline 1 \\ (\mathrm{c})(\mathrm{ii}) \end{array}$	The values are the same within experimental error OR The values are concordant ALLOW The values are similar The equilibrium can be approached from either direction OR The reaction is reversible OR Any comment relating equilibrium to reversibility IGNORE Dynamic equilibrium OR Rate of reverse reaction $=$ rate of forward reaction (1)	Just...the same	2

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 1 \\ & (c)(i i i) \end{aligned}$	(Acid) catalyst (makes it faster) OR Provides H^{+}(as a catalyst) OR Protonates... OR Protonating agent... OR Donates protons OR Increases H^{+}concentration	I nitiates Reacts with... Protates	1

Question Number	Acceptable Answers	Reject	Mark	
*2(a)	(A green solution) forms a yellow / orange / brown (solution) ALLOW reddish-brown	(1)	Red 'Green(ish)' with any other colour	2
	A grey / black precipitate ALLOW silver ppt ALLOW solid / crystals for precipitate	(1)	Silver mirror silver compound	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i) ~}$	$0.05(00)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i)}$	Amount of silver ion in $10 \mathrm{~cm}^{3}=$ amount of thiocyanate $=$ $\frac{5.6 \times 0.0200}{1000}=0.000112 / 1.12 \times 10^{-4}(\mathrm{~mol})$ (1)		$\mathbf{2}$
	So concentration of silver ion $=$ $0.000112 \times \frac{1000}{10}=0.0112 / 1.12 \times 10^{-2}$ $\left({\left.\mathrm{~mol} \mathrm{dm}^{-3}\right)}^{(10}\right.$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i i)}$	$0.0112 / 1.12 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Accept TE $=$ answer to (ii)	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
2(b)(iv)	$\begin{aligned} & 0.0500-0.0112=0.0388 / 3.88 \times 10^{-2} \\ & \left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \text { Accept TE }=0.05-\text { answer to (iii) } \\ & \text { Accept answer to (i) - answer to (iii) } \end{aligned}$		1

Question Number	Acceptable Answers	Reject	Mark
2(b)(v)	$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]}{\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]}$ ALLOW $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{Ag}^{+}\right]}$ Value Unit (any order) Three SF Accept TE from (iii) and (iv): (use of 0.1 from (i) gives $708 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$) If [Ag] is included in the numerator and taken as $=\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]$, then allow unit and SF marks ONLY, but must either state 'no units' or show working	[Ag] in numerator	4

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	$\begin{aligned} & \Delta \mathrm{S}_{\text {total }}^{\ominus}=8.31 \times \ln 309 \\ & \quad=+47.6(4) /+47.6(5) \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \mathrm{OR} \\ & \quad=8.31 \times \ln 309.311=+47.6(5) \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ Accept TE : $8.31 \times \ln ($ answer from $b(v))$ Value Sign and Unit (any order) IGNORE sf except 1		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i i)}$	First Mark: One of the products is a solid OR Two moles going to two moles but one of them is a solid OR Two moles of solution react to form one mole of solution / liquid and one mole of solid Second Mark (Hence) RHS more ordered / LHS less ordered	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i i i)}$	$\Delta \mathrm{S}_{\text {surroundings }}^{\ominus}=\Delta \mathrm{S}_{\text {total }}^{\ominus}-\Delta \mathrm{S}^{\ominus}{ }_{\text {system }}$ $=+47.6-(-208.3)=(+) 255.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$		$\mathbf{1}$
	Accept TE on $\mathrm{c}(\mathrm{i})$ IGNORE sf except 1		

Question Number	Acceptable Answers	Reject	Mark
2(c)(iv)	$\begin{align*} & \text { Because } \Delta \mathrm{S}_{\text {surroundings }}^{\ominus}=\frac{-\Delta \mathrm{H}^{\ominus}}{\mathrm{T}} \tag{1}\\ & \left.\begin{array}{l} \Delta \mathrm{H}=-298 \times 255.9=-76258\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \\ =-76.258(\mathrm{~kJ} \mathrm{~mol} \end{array}\right) \end{align*}$ Units if given must be correct Correct answer with or without working scores 2 marks IGNORE SF except 1 As T increases $\Delta \mathrm{S}^{\ominus}$ surroundings becomes less positive / decreases therefore $\Delta S_{\text {total }}$ becomes less positive / decreases	$\Delta \mathrm{S}_{\text {total }}^{\ominus}=\frac{-\Delta \mathrm{H}^{\ominus}}{\mathrm{T}}$	3

Question Number	Acceptable Answers	Reject	Mark
2*(d)	No change in the titre ALLOW No significant change (1) Stand alone mark (though silver solid was removed the equilibrium constant remains the same so) the equilibrium concentration(s) would (1) remain the same Second mark dependent on first IGNORE references to temperature	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	$\left(\mathrm{K}_{\mathrm{p}}=\right) \frac{\mathrm{pCH}_{3}}{\mathrm{pCH}_{3}} \mathrm{CO}_{2}-\frac{\mathrm{H}}{(\mathrm{x}) \mathrm{pCO}}$ Partial pressure symbol can be shown in various ways, eg pp, p_{co} (CO)p, etc ALLOW p in upper or lower case, round brackets IGNORE units	[] State symbols given as (I) + in botto line	1

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{3}$ (a)(ii)	P CH 3				
$\mathrm{P} \mathrm{COH}=4.9(\mathrm{~atm})(\mathbf{1)}$					
1 mark for recognition that pressures are equal					
IGNORE units				\quad	$\mathbf{2}$
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(iii)	$\mathrm{K}_{\mathrm{p}}=\left((22.2) /(4.9)^{2}\right)$ $=0.925(\mathbf{1})$ atm $^{-1}$ (1) stand alone mark but must match expression used in (a)(iii) OR $9.25 \times 10^{4} \mathrm{~Pa}^{-1} / 92.5 \mathrm{kPa}^{-1}$ (2) ALLOW TE from (a)(i) if inverted and/ or (a)(ii)	Answers to other than 3 significant figures	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i)}$	$\mathrm{CH}_{3} \mathrm{OH}: 3.2$ $\mathrm{CO}: 3.2$ (1) for both values $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}: 46.8$ (1) ALLOW TE for moles of ethanoic acid based on numbers of methanol and carbon monoxide used, as long as moles of methanol and carbon monoxide are equal and moles ethanoic acid + moles methanol =50	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(ii)	$\left(\frac{46.8 \times 32}{53.2}\right)=28.2 / 28.1504$ (atm)		
IGNORE sf except 1			
Value $=28.16$ if mol fraction rounded			
ALLOW TE from (b)(i)	$\frac{46.1}{50}=$	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(iii)	exothermic as yield / pp of ethanoic acid / conversion of reactants/ K is higher at lower temperature / as equilibrium moves (right) at lower temperature ALLOW if partial pressure of ethanoic acid <22.2 atm in (b)(ii), endothermic as yield / pp of ethanoic acid / conversion of reactants/ K_{p} is lower at lower temperature	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
3 (c)(i)	No effect and other concentrations change to keep K_{p} constant / K_{p} is only affected by temperature/ as equilibrium moves (right) to keep K_{p} constant / change in pressure does not change K_{p}	As K_{p} is a constant	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(ii)	Yield increased to restore fraction / quotient / partial pressure ratio back to K_{p}	$\mathbf{1}$	
	ALLOW (equilibrium moves) to use up the methanol / answers based on entropy or Le Chatelier Correct prediction in (c)(i) and (c)(ii) with inadequate explanations scores 1 mark in (c)(ii)	Just 'equilibrium moves to the right'	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)	Mark independently	Reaction can occur at lower temperature / has	
lower activation energy / requires less energy			
(1)			
less fuel needed / fewer emissions (from fuels)			
/ fewer raw materials needed / less natural			
resources used (1)			
OR			
on car exhaust			
emissions			

higher atom economy (1) \\
fewer raw materials needed / less natural \\
resources used (1)\end{array} \quad $$
\begin{array}{l}\text { (1) }\end{array}
$$\right.\)

