Question Number	Correct Answer		Reject	Mark
1(a)(i)	Mass of ethanoic acid = 0.04 x 60.1 = (2.404 g)	(1)		2
	Volume of ethanoic acid = 2.404 ÷ 1.049 =	(-)		
	$2.2917 = 2.3 \text{ (cm}^3\text{)}$	(1)		
	Correct answer with no working	(2)		
	Ignore SF except only one			
	ALLOW			
	60.0 for molar mass which gives mas 2.4 and volume 2.288 = 2.3 cm ³	(2)		
	OR			
	First step 1.049 \div 60/60.1 to find number of moles in 1 cm ³ = 0.017	(1)		
	Then volume = $0.04 \div 0.017$ = $2.3529 \text{ (cm}^3\text{)}$			
	But note, if whole calculation done on calculator, 60 gives 2.2879 and 61 gives 2.2917.			
	If units given, they must be correct, keep penalise wrong units only once here.	but		

Question Number	Correct Answer	Reject	Mark
1 (a)(ii)	Syringe	Gas syringe	1
	ALLOW Burette	Biuret	
	Graduated/adjustable pipette	Just 'pipette'	

Question Number	Correct Answer	Reject	Mark
1 (a)(iii)	To prevent		1
(a)(iii)	evaporation/vapour escaping		
	water vapour entering		
	OR To maintain a closed system		
	OR To maintain a closed environment		
	ALLOW		
	To prevent:		
	air oxidizing the alcohol		
	reaction with air		
	OR Due to volatility (of chemicals)		
	IGNORE		
	gas escaping		
	HCI escaping		

Question Number	Correct Answer		Reject	Mark
1	First and second mark			3
(a)(iv)	Phenolphthalein (**	1)	Litmus/universal indicator	
		1)	Pink to colourless	
	ALLOW Other indicators with pK _{in} in range 7.5 – 10			
	Some examples are:			
	Thymol blue ((base)) (yellow to blue)		Thymol blue (acid)	
	Phen ol red (yellow to red)		Phenyl red Methyl red	
	Thymolphthalein (colourless to blue)		wetriyi red	
	Second mark depends on correct indicate except bromothymol blue, which is incorrect but very close to range so allow colour yellow to blue.			
	Third mark Sodium ethanoate is (slightly) alkaline			
	OR Ethanoic acid is a weak acid			
	OR Phenolphthalein pH range coincides with vertical section of the pH/titration curve	1		
	OR Titration of weak acid with strong base			
	OR Neutralisation/equivalence point is at 8- 10/ any number between 8 and 10.			
	OR pK _{in} +/-1 lies within vertical region	1)		
	Third mark is independent	י.		

Question Number	Correct Answer	Reject	Mark
1 (b)(i)	$CH_3COOH + CH_3CH_2OH \rightleftharpoons$ $CH_3COOCH_2CH_3 + H_2O$		1
	ALLOW		
	Single arrow		
	-CO ₂ H		
	-C ₂ H ₅		
	Displayed formulae		
	IGNORE state symbols even if incorrect		

Question Number	Correct Answer	Reject	Mark
1 (b)(ii)	Volume of alkali reacting with ethanoic acid = 77.1-11.7 = 65.4 cm ³ (1)		2
	Moles of ethanoic acid = 65.4×0.200 1000 = 0.01308/1.308×10 ⁻² (mol)		
	Correct answer no working (2)		
	Ignore SF except 1		
	Allow internal TE for use of		
	Moles of ethanoic acid = $\frac{77.1 \times 0.200}{1000}$		
	= 0.01542/1.542x10 ⁻² (mol) max (1)		

Question Number	Correct Answer	Reject	Mark
1	Number of moles of ethanol =		1
(b)(iii)	0.01308/1.308x10 ⁻² (mol)		
	TE same as (ii)		

Question	Correct Answer	Reject	Mark
Number			
1	Number of moles of ethyl ethanoate		1
(b) (iv)	=0.0400-0.01308 = 0.02692 (mol)		
	Allow TE from (ii)/(iii) for example		
	0.01542 gives 0.02458		

Question Number	Correct Answer		Reject	Mark
1 (b)(v)	$K_{c} = \frac{[CH_{3}CO_{2}CH_{2}CH_{3}][H_{2}O]}{[CH_{3}CO_{2}H][CH_{3}CH_{2}OH]}$	(1)		2
	= <u>0.02692 x 0.02692</u> 0.01308 x 0.01308			
	= 4.23579 = 4.24	(1)		
	Ignore SF except one	(1)		
	Allow TE from (ii), (iii) and (iv) for example			
	0.01542 etc gives 2.54			
	No TE for incorrect expression of K_c			

Question Number	Correct Answer	Reject	Mark
1 (b)(vi)	The units cancel OR There are the same numbers of moles of reactants and products		1

Question Number	Correct Answer	Reject	Mark
1 (b)(vii)	(Concentrated) hydrochloric acid contains water		1

Question Number	Correct Answer	Reject	Mark
1 (c)(i)	First test tube esterification		2
	OR		
	addition/elimination		
	ALLOW Condensation (1)		
	Second test tube (acid) hydrolysis (1)	Alkaline hydrolysis	
	Two fully correct answers in wrong order (1) ma	followed by acidification	

Question Number	Correct Answer	Reject	Mark
1 (c)(ii)	The values are the same within experimental error	Justthe same	2
	OR		
	The values are concordant		
	ALLOW		
	The values are similar (1)		
	The equilibrium can be approached from either direction		
	OR		
	The reaction is reversible		
	OR		
	Any comment relating equilibrium to reversibility		
	IGNORE Dynamic equilibrium		
	OR		
	Rate of reverse reaction = rate of forward reaction (1)		

Question Number	Correct Answer	Reject	Mark
1	(Acid) catalyst (makes it faster)	Initiates	1
(c)(iii)	OR Provides H ⁺ (as a catalyst)	Reacts with	
	OR Protonates	Protates	
	OR Protonating agent		
	OR Donates protons		
	OR Increases H ⁺ concentration		

Question Number	Acceptable Answers		Reject	Mark
*2(a)	(A green solution) forms a yellow / orange / brown (solution) ALLOW reddish-brown A grey / black precipitate ALLOW silver ppt ALLOW solid / crystals for precipitate	(1) (1)	Red 'Green(ish)' with any other colour Silver mirror silver compound	2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	0.05(00) (mol dm ⁻³)		1

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)(ii)	Amount of silver ion in 10 cm ³ = amount of thiocyanate = $5.6 \times 0.0200 = 0.000112/1.12 \times 10^{-4}$ (mol)		2
	1000 (1) So concentration of silver ion = $0.000112 \times 1000 = 0.0112/1.12 \times 10^{-2}$ (mol dm ⁻³) 10 (1)		

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)(iii)	0.0112/1.12 x 10 ⁻² (mol dm ⁻³)		1
	Accept TE = answer to (ii)		

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)(iv)	$0.0500 - 0.0112 = 0.0388/3.88 \times 10^{-2}$ (mol dm ⁻³)		1
	Accept TE = 0.05 - answer to (iii) Accept answer to (i) - answer to (iii)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(v)	$K_c = \frac{[Fe^{3+}(aq)]}{[Fe^{2+}(aq)][Ag^+(aq)]}$ $ALLOW K_c = \frac{[Fe^{3+}]}{[Fe^{3+}]}$	[Ag] in numerator	4
	[Fe ²⁺] [Ag ⁺] (1)		
	= 0.0388 0.01122 = 309.311 = 309 dm3 mol-1		
	Value (1)		
	Unit (any order) (1)		
	Three SF (1)		
	Accept TE from (iii) and (iv): (use of 0.1 from (i) gives 708 dm ³ mol ⁻¹)		
	If [Ag] is included in the numerator and taken as = [Fe ³⁺ (aq)], then allow unit and SF marks ONLY, but must either state 'no units' or show working		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	$\Delta S_{\text{total}}^{\circ} = 8.31 \text{ x ln } 309$ $= + 47.6(4) / +47.6(5) \text{J mol}^{-1} \text{ K}^{-1}$ OR $= 8.31 \text{ x ln } 309.311 = +47.6(5) \text{ J mol}^{-1} \text{ K}^{-1}$ Accept TE: 8.31 x ln(answer from b(v)) Value (1)		2
	Sign <u>and</u> Unit (any order) (1)		
	IGNORE sf except 1		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	First Mark: One of the products is a solid		2
	OR		
	Two moles going to two moles but one of them is a solid		
	OR		
	Two moles of solution react to form one mole of solution / liquid and one mole of solid (1)		
	Second Mark (Hence) RHS more ordered / LHS less ordered (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	$\Delta S^{\circ}_{\text{surroundings}} = \Delta S^{\circ}_{\text{total}} - \Delta S^{\circ}_{\text{system}}$ $= +47.6 - (-208.3) = (+)255.9 \text{ (J mol}^{-1} \text{ K}^{-1})$ Accept TE on c(i) IGNORE sf except 1		1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iv)	Because $\Delta S^{e}_{surroundings} = \frac{-\Delta H^{e}}{T}$ (1)	$\Delta S^{\circ}_{\text{total}} = \frac{-\Delta H^{\circ}}{T}$	3
	ΔH = -298 x 255.9 = -76258 (J mol ⁻¹) = -76.258 (kJ mol ⁻¹) (1)		
	Units if given must be correct Correct answer with or without working scores 2 marks		
	IGNORE SF except 1		
	As T increases $\Delta S^{\circ}_{\text{surroundings}}$ becomes less positive / decreases therefore ΔS_{total} becomes less positive / decreases		
	ALLOW more negative for less positive (1)		

Question Number	Acceptable Answers	Reject	Mark
2*(d)	No change in the titre ALLOW No significant change Stand alone mark (1)		2
	(though silver solid was removed the equilibrium constant remains the same so) the equilibrium concentration(s) would remain the same (1) Second mark dependent on first IGNORE references to temperature		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	(K _p =) pCH ₃ CO ₂ H pCH ₃ OH (x) pCO Partial pressure symbol can be shown in various ways, eg pp, p _{CO} , (CO)p, etc ALLOW p in upper or lower case, round brackets IGNORE units	[] State symbols given as (I) + in botto line	1

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	P CH ₃ OH = 4.9 (atm) (1) P CO = 4.9 (atm) (1)		2
	1 mark for recognition that pressures are equal		
	IGNORE units		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iii)	$K_p = ((22.2)/(4.9)^2)$ = 0.925 (1) atm ⁻¹ (1) stand alone mark but must match expression used in (a)(iii) OR 9.25 x 10 ⁴ Pa ⁻¹ / 92.5 kPa ⁻¹ (2) ALLOW TE from (a)(i) if inverted and/or (a)(ii)	Answers to other than 3 significant figures	2

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	CH ₃ OH: 3.2 CO : 3.2 (1) for both values		2
	CH ₃ CO ₂ H: 46.8 (1)		
	ALLOW TE for moles of ethanoic acid based on numbers of methanol and carbon monoxide used, as long as moles of methanol and carbon monoxide are equal and moles ethanoic acid + moles methanol = 50		

Question Number	Acceptable Answers	Reject	Mark
3 (b)(ii)	$\frac{46.8 \times 32}{53.2} = 28.2 / 28.1504 \text{ (atm)}$ $IGNORE \text{ sf except 1}$ $Value = 28.16 \text{ if mol fraction rounded}$ $ALLOW \text{ TE from (b)(i)}$	28.1 46.8 x 32 = 50 29.95 (atm)	1

Question Number	Acceptable Answers	Reject	Mark
3 (b)(iii)	exothermic as yield / pp of ethanoic acid / conversion of reactants/ K_p is higher at lower temperature / as equilibrium moves (right) at lower temperature ALLOW if partial pressure of ethanoic acid < 22.2 atm in (b)(ii), endothermic as yield / pp of ethanoic acid / conversion of reactants/ K_p is lower at lower temperature		1

Н

Question Number	Acceptable Answers	Reject	Mark	
3 (c)(i)	No effect and other concentrations change to keep K_p constant / K_p is only affected by temperature/ as equilibrium moves (right) to keep K_p constant / change in pressure does not change K_p	As K _p is a constant	1	

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	Yield increased to restore fraction / quotient / partial pressure ratio back to K _p ALLOW (equilibrium moves) to use up the methanol /answers based on entropy or Le Chatelier Correct prediction in (c)(i) and (c)(ii) with inadequate explanations scores 1 mark in (c)(ii)	Just 'equilibrium moves to the right'	1

Question Number	Acceptable Answers	Reject	Mark
3 (d)	Mark independently Reaction can occur at lower temperature / has lower activation energy / requires less energy (1) less fuel needed / fewer emissions (from fuels) / fewer raw materials needed / less natural resources used (1) OR Enables use of an alternative process with higher atom economy (1) fewer raw materials needed / less natural resources used (1)	Answer based on car exhaust emissions	2