Question	Acceptable Answers	Reject	Mark
Number			
1(a)(i)	$(K_C =) [CH_3COOCH_2CH_3] [H_2O]$		1
	[CH ₃ COOH] [CH ₃ CH ₂ OH]		
	ALLOW		
	C ₂ H ₅ for CH ₃ CH ₂		
	State symbols are not required		
	IGNORE any incorrect state symbols		

Question Number	Acceptable Answers		Reject		Mark	
1(a)(ii)						2
	Component	CH ₃ COOH(I)	C ₃ CH ₂ OH(I)	C ₃ COOCH ₂ CH ₃ (I)	₂ O(I)	
	Equilibrium amount / mol	(0.20)	0.10	0.20	0.35	
			BOTH 0.10 A	ND 0.20 (1)	0.35 (1)	
	0.10 and 0.2	0 scores first	mark			
	Allow 0.1 and 0.2					
	0.35 scores s	econd mark				

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	Units cancel OR same number of moles/same number of molecules on each side OR volume / V cancels Ignore statements such as 'concentrations cancel' 'products and reactants cancel' 'same number of products as reactants'	Concentrations are the same	1

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	$K_{\rm C} = \frac{(0.20) \ / \ V \ x \ (0.35) \ / \ V}{(0.20) \ / \ V \ x \ (0.10) \ / \ V}$ = 3.5 / 3.50 Correct answer with or without working scores 1 Ignore omission of V TE from values in (ii) table	$K_{C} = 4$	1
Question Number	Acceptable Answers	Reject	Mark
1(b)	 No effect on (position of) equilibrium (1) Rate (of attainment of equilibrium) is faster / equilibrium reached sooner		2

	Acceptable Answers	Reject	Mark
Question Number 1(c)(i)	Bonds Broken C—O and O—H (1) Ignore where these bonds are broken in the acid and alcohol molecules. ALLOW C—OH for C—O CO—H for O—H	,	2
	Bonds Made C—O and O—H (1) Ignore where these bonds are made in the ester and water molecules.	Two O—H bonds formed in H ₂ O molecule	
	ALLOW C—OC for C—O H—OH for O-H		
	Marks can be awarded by annotating displayed or structural formulae. Comment: Max 1 if any other bonds mentioned	ONLY C—O bond broken and made scores (0) overall	

Question	Acceptable Answers	Reject	Mark
Number			
1(c)(ii)	(C-O and O-H) bond enthalpies differ in: different environments /different molecules /different compounds OR Bond enthalpies/bond energies are average values	'Heat loss'	1
	ALLOW Bonds being broken and made are attached to different atoms		

Question	Acceptable Answers	Reject	Mark
Number			
1 (d)(i)	$\Delta S_{\text{total}} = R \ln K$	log instead of In	1
	Allow ΔS_{total} is proportional to $\underline{\mathbf{In}}K$	ΔS_{total} is proportional to K /	
		ΔS_{total} increases as K	
	ALLOW K_c or K_p instead of K	increases	

Question Number	Acceptable Answers	Reject	Mark
*1(d)(ii	mark:		3
	$(\Delta H = 0 \text{ so})$		
	$\Delta S_{\text{surroundings}} = 0$		
	OR		
	$-\underline{\Delta}\underline{H}=0$		
	IGNORE " $\Delta S_{\text{surroundings}}$ stays the same".		
	Second mark:		
	(so) ΔS_{total} does not change		
	OR (so) $\Delta S_{\text{total}} = \Delta S_{\text{system}}$ (1)		
	Third mark:		
	(As $\Delta S_{\text{total}} = R \ln K$) K does not alter (1)	If only mentions 'no effect on position of equilibrium'	
	ALLOW "it does not alter" to assume K does not alter.	rather than the equilibrium constant	
	ALLOW use of K_c or K_p instead of K		
	Each point is stand alone		
	IGNORE justifications in terms of Le Chatelier's Principle		
	NOTE:		
	Can award max (1) (i.e. the third scoring point) if the effect on K stated follows on CQ from a change to ΔS_{total}		

Question Number	Acceptable Answers	Reject	Mark
1 (e)(i)	CH ₃ COCI + CH ₃ CH ₂ OH → CH ₃ COOCH ₂ CH ₃ + HCI Allow C ₂ H ₅ for CH ₃ CH ₂ Allow CH ₃ CO ₂ CH ₂ CH ₃ for CH ₃ COOCH ₂ CH ₃ IGNORE missing or incorrect state symbols	CH₃CCIO/ CH₂CH₃OH	1

Question Number	Acceptable Answers	Reject	Mark
1(e)(ii)	IGNORE Bond angles and length of the lines.		1

Question Number	Acceptable Answers	Reject	Mark
1(e)(iii)	H—C—C N—H H IGNORE Other products of the reaction if the above structure has been correctly drawn.	NH ₂ or CH ₃	1

Question Number	Acceptable Answers	Reject	Mark
1(f)(i)	(CH ₃ COOCH ₂ CH ₃ + NaOH →) CH ₃ COONa + CH ₃ CH ₂ OH /C ₂ H ₅ OH Allow ionic representations of the sodium salt CH ₃ COO ⁻ Na ⁺ IGNORE missing or incorrect state symbols	CH₂CH₃OH for ethanol	1

Question Number	Acceptable Answers	Reject	Mark
1(f)(ii)	(Reaction with sodium hydroxide is) not an equilibrium / not reversible / goes to completion OR Reverse argument for acid hydrolysis		1

Question Number	Acceptable Answers	Reject	Mark
2 (a)	$K_{\rm p} = \frac{p({\rm H_2})^3 p({\rm CO})}{p({\rm CH_4})p({\rm H_2O})}$ (1)	[]	1
	Brackets not required	$K_p = \frac{p(H_2)^3 + p(CO)}{p(CH_4) + p(H_2O)}$	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	No effect (as K_p dependent only on temperature)		1
	(1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	(Since $K_p = \frac{x(H_2)^3 x(CO) \times P_T^4}{x(CH_4)x(H_2O)} \frac{P_T^4}{P_T^2}$ to maintain K_p constant, mole fractions of numerator must decrease OR mole fractions of denominator must increase as $\times P_T^2$ overall) First mark: EITHER mole fractions/partial pressures of numerator decrease OR mole fractions/partial pressures of denominator increase (1) Second mark: any mention of $\times P_T^2$ OR $\times P_T^4$ P_T^4		2
	(1)		
	ALLOW P for P_T		
	NOTE: If Le Chatelier quoted, statements such as:		
	"Equilibrium shifts to side of fewer moles (of gas molecules)/fewer (gas) molecules" max (1)		
	iliax (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	Reaction takes place on surface of the catalyst (1) Active sites/(catalyst) surface is saturated with reactant molecules/reactants (at the pressure of the reaction) NOTE: an answer such as " depends on the availability of active sites on catalyst surface" scores (2)		2

Question Number	Acceptab	le Answer	S			Reject	Mark
2 (c)		$CO + H_2O \Rightarrow CO_2 + H_2$					3
	initial	1	1	0	0		
	eq'm	0.25	0.25	0.75	0.75		
	mol frac	0.125	0.125	0.375	0.375		
	pp	3.75	3.75	11.25	11.25		
	• eq	• eq'm moles all correct (1)					
	• mo	mole fractions all correct (1)					
	• pa						
		nits			(1)		
	NOTE: 3rd	NOTE: 3rd mark not awarded if any units shown					
	NOTE: 11 3.	.25 ² 75 ² 9		;	scores (3)		
	NOTE: Ma						

Question Number	Acceptable Answers	Reject	Mark
2 (d)(i)	production (of hydrogen) forms CO ₂ OR production (of hydrogen) forms a Greenhouse gas OR production (of hydrogen) forms CO OR CO ₂ is a Greenhouse gas OR CO is a Greenhouse gas ALLOW production (of hydrogen) uses/requires energy ALLOW CO is toxic/poisonous	methane produced (0)	1

Question Number	Acceptable Answers	Reject	Mark
2 (d)(ii)	$2KHCO_3 \rightarrow K_2CO_3 + CO_2 + H_2O$		1
	ALLOW multiples		

Question Number	Acceptable Answers	Reject	Mark
2 (e)	products removed OR not a closed system OR balance between rate and yield OR balance between time and yield OR recycling of reactants OR more product in unit time (so process more economically viable) IGNORE any comments relating to cost	references to atom economy dangers of maintaining high pressures	1