Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	$\left(\mathrm{K}_{\mathrm{C}}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2}\right.}{\left[\mathrm{CH}_{3}\right]\left[\mathrm{CH}_{2} \mathrm{O}-\frac{\mathrm{O}}{} \mathrm{COOH}\right]}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]$ ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ State symbols are not required IGNORE any incorrect state symbols		1

Question	Acceptable Answers			Reject		Mark
1(a)(ii)						2
	Component	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})$	C $3_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})$	$\mathrm{C}{ }_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}(\mathrm{I})$	${ }_{2} \mathrm{O}$ (1)	
	Equilibrium amount / mol	(0.20)	0.10	0.20	0.35	
	BOTH 0.10 AND 0.20 (1) 0.35 (1) 0.10 and 0.20 scores first mark Allow 0.1 and 0.2 0.35 scores second mark					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i i)}$	Units cancel OR same number of moles/same number of molecules on each side OR volume / V cancels	Concentrations are the same	$\mathbf{1}$
	Ignore statements such as 'concentrations cancel' 'products and reactants cancel' 'same number of products as reactants'		

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	$\begin{aligned} \mathrm{K}_{\mathrm{C}} & =\frac{(0.20) / \mathrm{V} \times(0.35) / \mathrm{V}}{(0.20) / \mathrm{V} \times(0.10) / \mathrm{V}} \\ & =3.5 / 3.50 \end{aligned}$ Correct answer with or without working scores 1 I gnore omission of V	$\mathrm{K}_{\mathrm{C}}=4$	1
	TE from values in (ii) table		
Question Number	Acceptable Answers	Reject	Mark
1(b)	- No effect on (position of) equilibrium - Rate (of attainment of equilibrium) ${ }^{(1)}$) faster / equilibrium reached sooner		2

	Acceptable Answers	Reject	Mark
Question			2
Number 1(c)(i)	Bonds Broken		
	$\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$		
	Ignore where these bonds are broken		
	in the acid and alcohol molecules.		
	ALLOW		
	CO-H for O—H		
	Bonds Made		
	$\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$	Two O-H bonds formed in	
	I gnore where these bonds are made in the ester and water molecules.	$\mathrm{H}_{2} \mathrm{O}$ molecule	
	ALLOW		
	$\mathrm{C}-\mathrm{OC}$ for $\mathrm{C}-\mathrm{O}$		
	$\mathrm{H}-\mathrm{OH}$ for $\mathrm{O}-\mathrm{H}$		
	Marks can be awarded by annotating displayed or structural formulae.	ONLY C-O bond broken and made scores (0) overall	
	Comment:		
	Max 1 if any other bonds mentioned		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i)}$	(C-O and O-H) bond enthalpies differ in: different environments /different molecules /different compounds OR Bond enthalpies/bond energies are average values	'Heat loss'	$\mathbf{1}$
	ALLOW Bonds being broken and made are attached to different atoms		

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 (d) (i)}$	$\Delta \mathrm{S}_{\text {total }}=\mathrm{R} \operatorname{InK}$	log instead of In	$\mathbf{1}$		
	Allow $\Delta \mathrm{S}_{\text {total }}$ is proportional to $\ln \mathrm{K}$				$\Delta \mathrm{S}_{\text {total }}$ is proportional to K /
:---					
$\Delta \mathrm{S}_{\text {total }}$ increases as K					
increases	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mark
* 1 (d) (ii	mark: ($\Delta \mathrm{H}=0 \mathrm{so}$) $\Delta \mathrm{S}_{\text {surroundings }}=0$ OR $\begin{equation*} -\frac{\Delta H}{T}=0 \tag{1} \end{equation*}$ IGNORE " $\Delta \mathrm{S}_{\text {surroundings }}$ stays the same". Second mark: (so) $\Delta \mathrm{S}_{\text {total }}$ does not change OR (so) $\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {system }}$ Third mark: (As $\Delta \mathrm{S}_{\text {total }}=\mathrm{R} \ln \mathrm{K}$) K does not alter ALLOW "it does not alter" to assume K does not alter. ALLOW use of K_{c} or K_{p} instead of K Each point is stand alone I GNORE justifications in terms of Le Chatelier's Principle NOTE: Can award max (1) (i.e. the third scoring point) if the effect on K stated follows on CQ from a change to $\boldsymbol{\Delta} S_{\text {total }}$	If only mentions 'no effect on position of equilibrium' rather than the equilibrium constant	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (e) (i)}$	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$	$\mathrm{CH}_{3} \mathrm{CClO/CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$	$\mathbf{1}$
	Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ${\mathrm{Allow} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \text { for }}^{\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}}$ IGNORE missing or incorrect state symbols		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (e) (i i)}$	O		$\mathbf{1}$
	IGNORE		
Bond angles and length of the lines.			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (e) (i i i)}$	I		
	IGNORE Other products of the reaction if the above structure has been correctly drawn.	NH_{2} or CH_{3}	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (f) (i)}$	$\left(\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{NaOH} \rightarrow\right)$ $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$ for ethanol	$\mathbf{1}$
	Allow ionic representations of the sodium salt $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}$ IGNORE missing or incorrect state symbols		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (f) (i i)}$	(Reaction with sodium hydroxide is) not an equilibrium / not reversible / goes to completion OR Reverse argument for acid hydrolysis		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2 (a)	$K_{p}=\frac{p\left(\mathrm{H}_{2}\right)^{3} p(\mathrm{CO})}{p\left(\mathrm{CH}_{4}\right) p\left(\mathrm{H}_{2} \mathrm{O}\right)}$	(1)	[]
	Brackets not required		Kp $=\frac{p\left(\mathrm{H}_{2}\right)^{3}+p(\mathrm{CO})}{p\left(\mathrm{CH}_{4}\right)+p\left(\mathrm{H}_{2} \mathrm{O}\right)}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i) ~}$	No effect (as K_{p} dependent only on temperature)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	(Since $K_{\mathrm{p}}=\frac{x\left(\mathrm{H}_{2}\right)^{3} \times(\mathrm{CO}) \times \frac{P_{I^{I}}{ }^{4}}{x\left(\mathrm{CH}_{4}\right) x\left(\mathrm{H}_{2} \mathrm{O}\right)} \frac{P_{\mathrm{T}}{ }^{2}}{}{ }^{2}}{}$ to maintain K_{p} constant, mole fractions of numerator must decrease OR mole fractions of denominator must increase as $\times P_{T}{ }^{2}$ overall) First mark: EITHER mole fractions/partial pressures of numerator decrease OR mole fractions/partial pressures of denominator increase Second mark: any mention of $\times P_{T}^{2} \mathrm{OR} \times \frac{P_{T}{ }^{4}}{\boldsymbol{P}_{T}^{2}}$ ALLOW \mathbf{P} for $\boldsymbol{P}_{\mathrm{T}}$ NOTE: If Le Chatelier quoted, statements such as: "Equilibrium shifts to side of fewer moles (of gas molecules)/fewer (gas) molecules" max (1)		2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	Reaction takes place on surface of the catalyst (1)		$\mathbf{2}$
	Active sites/(catalyst) surface is saturated with reactant molecules/reactants (at the pressure of the reaction)	(1) NOTE: an answer such as "... depends on the availability of active sites on catalyst surface"	

Question Number	Acceptable Answers	Reject	Mark
2 (d)(i)	production (of hydrogen) forms CO_{2} OR production (of hydrogen) forms a Greenhouse gas	methane produced $\mathbf{(0)}$	$\mathbf{1}$
	OR production (of hydrogen) forms CO OR CO_{2} is a Greenhouse gas OR CO is a Greenhouse gas ALLOW production (of hydrogen) uses/requires energy ALLOW CO is toxic/poisonous		

Question Number	Acceptable Answers	Reject	Mark
2 (d)(ii)	$2 \mathrm{KHCO}_{3} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$		
ALLOW multiples		$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
2 (e)	products removed OR not a closed system OR balance between rate and yield OR balance between time and yield OR recycling of reactants OR more product in unit time (so process more economically viable) IGNORE any comments relating to cost	references to atom economy dangers of maintaining high pressures	$\mathbf{1}$

