1 The mass of magnesium ions in 1 kg of sea water is 1.3 g . The concentration in parts per million (ppm) isA 1.3×10^{6}
B 1.3×10^{3}C 1.3×10^{-3}
D 1.3×10^{-6}
(Total for Question = 1 mark)

2 Calculate the total number of ions in 7.41 g of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$.
The molar mass of calcium hydroxide is $74.1 \mathrm{~g} \mathrm{~mol}^{-1}$.
The Avogadro constant is $6.0 \times 10^{23} \mathrm{~mol}^{-1}$.
\square A 6.0×10^{22}B 1.2×10^{23}C 1.8×10^{23}D 3.0×10^{23}
(Total for Question = 1 mark)
$3100 \mathrm{~cm}^{3}$ of hydrogen is mixed with $25 \mathrm{~cm}^{3}$ of oxygen at a temperature of $150^{\circ} \mathrm{C}$. The gases react as shown in the equation below.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The total volume of gas present at the end of the reaction isA $50 \mathrm{~cm}^{3}$B $100 \mathrm{~cm}^{3}$C $125 \mathrm{~cm}^{3}$D $150 \mathrm{~cm}^{3}$

4 Sodium nitrate decomposes on heating.

$$
2 \mathrm{NaNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

What is the maximum volume of oxygen, measured in dm^{3} at room temperature and pressure, which could be obtained by heating 0.50 mol of sodium nitrate?
[Molar volume of a gas $=24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room temperature and pressure]
A 3B 6
C 12
D 24

5 An excess of copper(II) oxide is mixed with $40.0 \mathrm{~cm}^{3}$ of $2.50 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.

$$
\mathrm{CuO}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(a) If the mass of copper(II) chloride produced is 5.50 g , what is the percentage yield of copper(II) chloride?
[Molar mass of copper(II) chloride $\left.=134.4 \mathrm{~g} \mathrm{~mol}^{-1}\right]$

A 81.8%B 67.2\%
C 40.9%D 20.4\%
(b) The ionic equation for the reaction is

A Cu ${ }^{2+}(\mathrm{s})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})$B $\mathrm{CuO}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$C $\mathrm{CuO}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}\left(\mathrm{Cl}^{-}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$D CuO(s) $+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{O}^{2-(\mathrm{l})}$
(c) Some facts about copper(II) chloride are given below.

Which of these gives the best evidence that the bonding in copper(II) chloride is ionic?A It has a melting temperature of $620^{\circ} \mathrm{C}$.
B It does not conduct electricity as a solid.C It decomposes before it reaches its boiling temperature.D In the electron density map, there are no contour lines around more than one nucleus.

6 A compound has the composition $62.1 \% \mathrm{C}, 10.3 \% \mathrm{H}$ and $27.6 \% \mathrm{O}$.
What is its empirical formula?A $\mathrm{CH}_{2} \mathrm{O}$B $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}$C $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}$D $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

(Total for Question = 1 mark)

$725.00 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid is fully neutralized by $50.00 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
(a) What is the concentration of sodium sulfate solution produced by the reaction, in $\mathrm{mol} \mathrm{dm}^{-3}$?

A 1.00
$\square \quad$ B 0.67
\square C 0.50
■ D 0.33
(b) The volumes are measured using burettes, with each burette reading having an uncertainty of $\pm 0.05 \mathrm{~cm}^{3}$.

The percentage error in measuring the $25.00 \mathrm{~cm}^{3}$ of the acid is
\square A $\pm 0.05 \%$B $\pm 0.10 \%$C $\pm 0.20 \%$D $\pm 0.40 \%$

8 Complete combustion of a hydrocarbon produced 0.66 g of carbon dioxide and 0.225 g of water.

Which of the following molecular formulae is consistent with these data?A $\mathrm{C}_{3} \mathrm{H}_{6}$.B $\mathrm{C}_{3} \mathrm{H}_{8}$.C $\mathrm{C}_{6} \mathrm{H}_{6}$.D $\mathrm{C}_{6} \mathrm{H}_{10}$.
(Total for Question = 1 mark)

9 Phenol can be produced from benzene as shown in the reaction sequence below.

The mass of phenol, to 2 decimal places, produced from 3.90 g of benzene isA 3.38 g .B $\quad 3.76 \mathrm{~g}$.C 4.23 g .D 4.70 g .

10 Lithium reacts with water to produce hydrogen.

$$
\mathrm{Li}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{LiOH}(\mathrm{aq})+1 / 2 \mathrm{H}_{2}(\mathrm{~g})
$$

(a) In an experiment, $0.069 \mathrm{~g}(0.01 \mathrm{~mol})$ of lithium produced $90 \mathrm{~cm}^{3}$ of hydrogen at room temperature and pressure. What is the percentage yield of hydrogen?
[1 mol of any gas occupies $24 \mathrm{dm}^{3}$ at room temperature and pressure.]A 45%B 60\%C 75%D 90\%
(b) Which of the following is not a possible reason for the yield being less than 100% ?A Some oil remained on the surface of the lithium.B Hydrogen gas is very soluble in water.C A layer of oxide was present on the surface of the lithium.D Some of the hydrogen gas escaped collection.

11 How many moles of atoms are present in $240 \mathrm{~cm}^{3}$ of carbon dioxide at room temperature and pressure?
[1 mol of any gas occupies $24 \mathrm{dm}^{3}$ at room temperature and pressure.]A 0.010B 0.020C 0.024D 0.030

12 What is the percentage by mass of nitrogen in ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
[Molar masses/ $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{N}=14.0 ; \mathrm{H}=1.0 ; \mathrm{O}=16.0$]
A 14.0%
B 17.5%
\square C 28.0\%
■ D 35.0\%
(Total for Question = 1 mark)

13 A compound of nitrogen and hydrogen only is analyzed and found to contain 97.7\% by mass of nitrogen. What is the empirical formula of the compound?

Molar masses $/ \mathrm{g} \mathrm{mol}^{-1}: \mathrm{H}=1 ; \mathrm{N}=14$A NH_{3}B NH_{2}C $\mathrm{N}_{3} \mathrm{H}_{5}$D $\mathrm{N}_{3} \mathrm{H}$

14 Which of the following can be determined, for an unknown alkene, using only percentage composition by mass data?A Molecular formulaB Empirical (simplest) formulaC Both the molecular formula and the empirical (simplest) formulaD Structural formula

$$
\text { (Total for Question = } 1 \text { mark) }
$$

$15 \quad 1.12 \mathrm{~g}$ of iron reacts with oxygen to form 1.60 g of an oxide of iron. Use relative atomic masses: $\mathrm{Fe}=56, \mathrm{O}=16$.

What is the formula of this oxide of iron?
A FeO_{5}
\square B $\quad \mathrm{Fe}_{2} \mathrm{O}_{10}$
$\square \mathrm{C} \quad \mathrm{Fe}_{3} \mathrm{O}_{2}$
\square D $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}$
(Total for Question = 1 mark)
16 In an experiment, 1.226 g of potassium chlorate $(\mathrm{V}), \mathrm{KClO}_{3^{\prime}}$, was heated. A mass of 0.320 g of oxygen gas, O_{2}, was collected.

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

Use the molar mass of $\mathrm{KClO}_{3}=122.6 \mathrm{~g} \mathrm{~mol}^{-1}$ and relative atomic mass $\mathrm{O}=16$.
The percentage yield of oxygen in this experiment isA 17.4\%B 26.1\%C 66.7%
\square D 100\%

17 Oxygen gas, $\mathrm{O}_{2^{\prime}}$ can be converted into ozone, $\mathrm{O}_{3^{\prime}}$ by passing it through an electric discharge.

$$
3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})
$$

In an experiment, a volume of $300 \mathrm{~cm}^{3}$ of oxygen was used but only 10% of the oxygen was converted into ozone. All volumes were measured at the same temperature and pressure.

The total volume of gas present at the end of the experiment, in cm^{3}, was
A 200B 210C 290D 300
181.40 g of an alkene gave 3.77 g of a dichloroalkane on reaction with chlorine.

What is the molecular formula of the alkene?
A $\mathrm{C}_{2} \mathrm{H}_{4}$B $\mathrm{C}_{3} \mathrm{H}_{6}$C $\mathrm{C}_{4} \mathrm{H}_{8}$D $\mathrm{C}_{6} \mathrm{H}_{12}$

19 The recommended limit for safe exposure to sulfur dioxide in the air is 0.000025%. What is this concentration in parts per million, ppm?A 25B 0.25
C 0.025
D 0.0025
(Total for Question = 1 mark)

20 What is the number of atoms in 2.8 g of ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$?
DATA

- The molar mass of $\mathrm{C}_{2} \mathrm{H}_{4}$ is $28 \mathrm{~g} \mathrm{~mol}^{-1}$
- The Avogadro constant is $6.0 \times 10^{23} \mathrm{~mol}^{-1}$A $1.0 \quad 22$B $6.0 \quad 22$C $1.2{ }^{23}$
\square D $3.6 \quad{ }^{23}$
(Total for Question = 1 mark)

21 A compound has the following percentage composition by mass.
C 61.0\% H 15.3\% N 23.7\%
The empirical formula of the compound is
A $\mathrm{CH}_{3} \mathrm{~N}$B $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$C $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}$
$\square D \quad \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~N}_{3}$

22 Carbon monoxide and oxygen react together as follows.

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

If all volumes of gas are measured at the same temperature and pressure, the volume of carbon dioxide produced after $50 \mathrm{~cm}^{3}$ of carbon monoxide react with $25 \mathrm{~cm}^{3}$ of oxygen is

A $100 \mathrm{~cm}^{3}$
B $75 \mathrm{~cm}^{3}$
C $50 \mathrm{~cm}^{3}$
D $25 \mathrm{~cm}^{3}$

23 Potassium chlorate $(\mathrm{V}), \mathrm{KClO}_{3^{\prime}}$ decomposes on heating as follows.

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

What is the maximum volume of oxygen, measured in dm^{3} at room temperature and pressure, which could be obtained by heating 0.50 mol potassium chlorate (V) ?
[Molar volume of a gas $=24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room temperature and pressure.]A 8
B 18C 36
D 72

24 One definition of the term 'carbon footprint' is
'the amount of carbon dioxide produced when a fuel is burned.'

Fuel	Energy density $/ \mathrm{MJ} \mathrm{l}^{-1}$	CO_{2} produced on combustion $/ \mathrm{g} \mathrm{I}^{-1}$
Paraffin	46	2580

Given the information above, what is the carbon footprint for paraffin in terms of grams of CO_{2} produced per MJ of energy?

A 46
B 56.09C 2580
■ D 118680
(Total for Question = 1 mark)

25 Sodium thiosulfate was used to determine the concentration of iodine by titration.
(a) The sodium thiosulfate solution was prepared by dissolving 4.5 g of sodium thiosulfate in water and making the solution up to $250 \mathrm{~cm}^{3}$ in a volumetric flask. The volumetric flask is accurate to $\pm 0.3 \mathrm{~cm}^{3}$ so, to match this accuracy, the mass of the sodium thiosulfate should be accurate to at leastA $\pm 0.5 \mathrm{~g}$B $\pm 0.05 \mathrm{~g}$C $\pm 0.005 \mathrm{~g}$D $\pm 0.0005 \mathrm{~g}$
(b) With the sodium thiosulfate in the burette, what is the colour of the solution in the conical flask at the end-point of the reaction?

A Blue-black
B Colourless
\square C Red-brown
D Yellow
(Total for Question = 2 marks)
$2615 \mathrm{~cm}^{3}$ of a gaseous hydrocarbon requires $90 \mathrm{~cm}^{3}$ of oxygen for complete combustion, both volumes being measured at $15^{\circ} \mathrm{C}$ and 1 atm . The formula of the hydrocarbon is

A $\mathrm{C}_{4} \mathrm{H}_{6}$B $\mathrm{C}_{4} \mathrm{H}_{8}$C $\mathrm{C}_{4} \mathrm{H}_{10}$D impossible to calculate without knowing the molar volume of gases under these conditions.

27 A drop of sodium manganate (VII) solution is placed at the centre of a piece of moist filter paper on a microscope slide. The ends of the paper are clipped to a 30 V DC power supply. After a few minutes,A a purple colour has moved towards the positive terminal.B a purple colour has moved towards the negative terminal.C an orange colour has moved towards the positive terminal.D an orange colour has moved towards the negative terminal.
(Total for Question = 1 mark)
28 How many moles of ions are present in $20 \mathrm{~cm}^{3}$ of $0.050 \mathrm{~mol} \mathrm{dm}^{-3}$ calcium chloride solution, $\mathrm{CaCl}_{2}(\mathrm{aq})$?

A 0.0050B 0.0030C 0.0020D 0.0010
(Total for Question = 1 mark)

29 The Avogadro constant is $6.0 \times 10^{23} \mathrm{~mol}^{-1}$. The number of atoms in 1 mol of dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, is
$\square \quad$ A $\quad 3.6 \quad 24$B $1.8 \quad{ }^{24}$C $6.0{ }^{23}$
$\square \quad$ D $1.0 \quad{ }^{23}$

30 The equation for the complete combustion of ethane is

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What volume of oxygen, measured at room temperature and pressure, is needed to completely burn 0.1 mol of ethane?
[The volume of 1 mol of any gas measured at room temperature and pressure is $24 \mathrm{dm}^{3}$]
A $2.4 \mathrm{dm}^{3}$
B $4.8 \mathrm{dm}^{3}$
C $8.4 \mathrm{dm}^{3}$
D $16.8 \mathrm{dm}^{3}$

(Total for Question = 1 mark)

31 A sample of swimming pool water contains 0.482 parts per million (ppm) of chlorine. This is equal to a percentage of

A 0.000482
B 0.0000482C 0.00000482
D 0.000000482

32 A compound was found to contain 2.8 g of nitrogen and 8.0 g of oxygen.
What is the empirical formula of the compound?
Use the Periodic Table as a source of data.
A NO
B NO_{2}
C $\mathrm{N}_{2} \mathrm{O}_{3}$
D $\mathrm{N}_{2} \mathrm{O}_{5}$
(Total for Question = 1 mark)
33 What is the total number of atoms in 1.8 g of water, $\mathrm{H}_{2} \mathrm{O}$?
DATA

- The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18 \mathrm{~g} \mathrm{~mol}^{-1}$
- The Avogadro Constant is $6.0 \times 10^{23} \mathrm{~mol}^{-1}$

A 6.0×10^{22}
B 6.0×10^{23}
\square C 1.8×10^{23}
D 1.8×10^{24}
(Total for Question = 1 mark)
34 Phosphorus(V) chloride, $\mathrm{PCl}_{5^{\prime}}$, reacts with water according to the equation

$$
\mathrm{PCl}_{5}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+5 \mathrm{HCl}(\mathrm{aq})
$$

If 1.04 g of phosphorus pentachloride (molar mass $=208 \mathrm{~g} \mathrm{~mol}^{-1}$) is reacted completely with water and the solution made up to $1 \mathrm{dm}^{3}$, the concentration of the hydrochloric acid in $\mathrm{mol} \mathrm{dm}^{-3}$ is

マ A 0.001
\square B 0.005
$\square \quad 0.025$
■ D 0.250

35 A sample of sodium chlorate($(\mathrm{V}), \mathrm{NaClO}_{3^{\prime}}$, was heated and $120 \mathrm{~cm}^{3}$ of oxygen gas was collected.

$$
2 \mathrm{NaClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

Calculate the number of moles of sodium chlorate (V) that were decomposed in the above reaction.
[Molar volume of a gas under the conditions of the experiment $=24000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$]
\square A 2.50×10^{-3}B 3.33×10^{-3}C 5.00×10^{-3}
D 7.50×10^{-3}
$363.0 \mathrm{dm}^{3}$ of sulfur dioxide reacts with $1.5 \mathrm{dm}^{3}$ of oxygen, under suitable conditions, according to the equation below.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

What is the maximum volume of sulfur trioxide that can be formed in the above reaction?
[The volumes of the gases are measured at the same temperature and pressure.]
A $6.0 \mathrm{dm}^{3}$B $4.5 \mathrm{dm}^{3}$C $3.0 \mathrm{dm}^{3}$
D $1.5 \mathrm{dm}^{3}$

37 Hydrochloric acid and sodium carbonate solution react as shown below.

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which sample of sodium carbonate solution will be neutralized by $20 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid?

	Volume of sodium carbonate/ cm^{3}	Concentration of sodium carbonate/ $\mathrm{mol} \mathrm{dm}^{-3}$
\square A	10	0.05
\square B	40	0.05
$\square \mathrm{C}$	40	0.10
\square D	10	0.10

(Total for Question = 1 mark)

38 The concentration of a solution of potassium iodate (V) can be determined by the liberation of iodine, followed by titration with sodium thiosulfate.

A suitable indicator isA methyl orange.B phenolphthalein.C starch.D universal indicator.

39 A $50 \mathrm{~cm}^{3}$ sample of a gaseous hydrocarbon required exactly $250 \mathrm{~cm}^{3}$ of oxygen for complete combustion. A volume of $150 \mathrm{~cm}^{3}$ of carbon dioxide was produced.
[All volume measurements were made at the same temperature and pressure.]
Which of the following is the correct formula of the hydrocarbon?
A $\mathrm{C}_{3} \mathrm{H}_{4}$B $\mathrm{C}_{3} \mathrm{H}_{8}$C $\mathrm{C}_{5} \mathrm{H}_{10}$
$\square \mathrm{C}_{5} \mathrm{H}_{12}$
(Total for Question = 1 mark)

40 A solution contains 66 ppm of a solute. The mass of the solute dissolved in 1 kg of this solution isA 66 gB $\quad 0.66 \mathrm{~g}$C $\quad 0.066 \mathrm{~g}$D $\quad 0.000066 \mathrm{~g}$

