1 Complete combustion of $50 \mathrm{~cm}^{3}$ of a hydrocarbon vapour gave $350 \mathrm{~cm}^{3}$ of carbon dioxide, both gas volumes being measured at the same temperature and pressure. The formula of the hydrocarbon could beA $\quad \mathrm{C}_{8} \mathrm{H}_{18}$B $\mathrm{C}_{7} \mathrm{H}_{16}$C $\quad \mathrm{C}_{6} \mathrm{H}_{14}$D $\mathrm{C}_{5} \mathrm{H}_{12}$

(Total for Question 1 mark)

2 Which of the following statements is true? The Avogadro constant is the number ofA grams of any element which contains 6.02×10^{23} atoms of that element.B atoms contained in one mole of any element.C atoms contained in one mole of any monatomic element.D particles (atoms, molecules or ions) required to make one gram of a substance.
(Total for Question 1 mark)

3 A compound \mathbf{Z} contains, by mass, 26.7% carbon, 2.2% hydrogen, and 71.1% oxygen. The empirical formula of \mathbf{Z} is

A CHO_{2}B $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$C CHO
D $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$

4 An important reaction which occurs in the catalytic converter of a car is

$$
2 \mathrm{CO}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

In this reaction, when $500 \mathrm{~cm}^{3}$ of CO reacts with $500 \mathrm{~cm}^{3}$ of NO at $650{ }^{\circ} \mathrm{C}$ (the operating temperature of the catalyst) and at 1 atm , the total volume of gases produced at the same temperature and pressure is
\square A $\quad 500 \mathrm{~cm}^{3}$
B $750 \mathrm{~cm}^{3}$
\square C $\quad 1000 \mathrm{~cm}^{3}$
\square D impossible to calculate without knowing the molar volume of gases under these conditions.
(Total for Question 1 mark)

5 Ethanol (molar mass $46 \mathrm{~g} \mathrm{~mol}{ }^{1}$) is manufactured by the hydration of ethene (molar mass $28 \mathrm{~g} \mathrm{~mol}^{1}$):

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

In a typical process 28 tonnes of ethene produces 43.7 tonnes of ethanol. The percentage yield of ethanol in this process isA 64%B 95%C 100%
\square D 156\%

6 The following reactions have been used in the chemical industry to make liquid and solid products, allowing any gaseous products to escape into the atmosphere:

A $\quad \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \quad \rightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})$
B $\mathrm{CaCO}_{3}(\mathrm{~s}) \quad \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
C $\quad \mathrm{CH}_{4}(\mathrm{~g}) \quad+3 \mathrm{C}_{2}(\mathrm{~g}) \rightarrow \mathrm{CHCl}_{3}(\mathrm{l})+3 \mathrm{HCl}(\mathrm{g})$
D $\quad \mathrm{CH}_{2} \mathrm{CH}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \rightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(\mathrm{l})$
(a) Which reaction has an atom economy by mass of 56% ?
$\square \mathbf{A}$
B
\square C
D
(b) Which reaction causes the most immediate damage to the environment?
\square A
B
$\square \mathrm{C}$
D
(c) Which reaction is an electrophilic addition?
$\square \mathbf{A}$
B
D

7 The enthalpy change of neutralization of an acid by an alkali is measured by adding $10.0 \mathrm{~cm}^{3}$ of hydrochloric acid to $10.0 \mathrm{~cm}^{3}$ of sodium hydroxide. $10.0 \mathrm{~cm}^{3}$ pipettes with an accuracy of $\pm 0.04 \mathrm{~cm}^{3}$ are used to measure out both solutions.

The overall percentage error in measuring the total volume of the reaction mixture is
A $\pm 0.04 \%$
B $\pm 0.08 \%$C $\pm 0.4 \%$
D $\pm 4.0 \%$
(Total for Question 1 mark)

8 A sample of gas was prepared for use in helium-neon lasers. It contained 4 g of helium and 4 g of neon. What is the ratio of helium atoms to neon atoms in the sample?A $\quad 1: 1$B 2.5 :
$\square \mathbf{C} \quad 1: 5$
\square D $5: 1$

9 The overall equation for the reaction between sulfur and oxygen to form sulfur trioxide is shown below.

$$
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

0.9 mol of $\mathrm{O}_{2}(\mathrm{~g})$ reacted completely with excess sulfur. What volume, in dm^{3}, of sulfur trioxide would form?
[Assume the molar gas volume $=24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$]A $(0.9 \times 3 / 2) \times 24$B $(0.9 \times 3 / 2) \div 24$C $(0.9 \times 2 / 3) \times 24$D $(0.9 \times 2 / 3) \div 24$
(Total for Question = 1 mark)

10 Which of these solutions does not contain the same total number of ions as the others?A $10.00 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}(\mathrm{aq})$B $20.00 \mathrm{~cm}^{3}$ of $0.050 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}(\mathrm{aq})$C $20.00 \mathrm{~cm}^{3}$ of $0.050 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{MgCl}_{2}(\mathrm{aq})$D $13.33 \mathrm{~cm}^{3}$ of $0.050 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{MgCl}_{2}(\mathrm{aq})$
(Total for Question = 1 mark)

11 Calculate the volume of dilute sulfuric acid, concentration $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$, required to neutralize $20.0 \mathrm{~cm}^{3}$ aqueous sodium hydroxide, concentration $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$A $2.0 \mathrm{~cm}^{3}$B $4.0 \mathrm{~cm}^{3}$C $8.0 \mathrm{~cm}^{3}$D $20.0 \mathrm{~cm}^{3}$

12 A compound was analysed and found to contain
1.45 g carbon $\quad 0.482 \mathrm{~g}$ hydrogen $\quad 1.69 \mathrm{~g}$ nitrogen
[Relative atomic masses: $\mathrm{C}=12 ; \mathrm{H}=1 ; \mathrm{N}=14$]
The empirical formula of the compound is
$\square \mathrm{A} \quad \mathrm{CH}_{3} \mathrm{~N}$B $\mathrm{CH}_{4} \mathrm{~N}$
$\square \mathrm{C} \quad \mathrm{CH}_{5} \mathrm{~N}$D $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$
$13 \quad 17.1 \mathrm{~g}$ of aluminium sulfate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3^{\prime}}$, was dissolved in water.
Calculate the number of sulfate ions, SO_{4}^{2-}, present in the solution formed.
[A ssume the molar mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is $342 \mathrm{~g} \mathrm{~mol}^{-1}$ and the A vogadro Constant is $6 \times 10^{23} \mathrm{~mol}^{-1}$.]

A 3×10^{21}B 1×10^{22}C 3×10^{22}D 9×10^{22}
(Total for Question = 1 mark)

14 Calculate the mass of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$, present in $100 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution.
[A ssume the molar mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $74.0 \mathrm{~g} \mathrm{~mol}^{-1}$.]
A $\quad 0.570 \mathrm{~g}$B $\quad 0.740 \mathrm{~g}$C $\quad 1.85 \mathrm{~g}$D $\quad 3.70 \mathrm{~g}$
(Total for Question = 1 mark)

15 Sodium hydrogensulfate, NaHSO_{4}, reacts with sodium hydroxide, NaOH , as shown below.

$$
\mathrm{NaHSO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

0.0100 mol of sodium hydrogensulfate is neutralized with dilute sodium hydroxide, concentration $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$.

Calculate the volume of sodium hydroxide required.A $20.0 \mathrm{~cm}^{3}$B $\quad 50.0 \mathrm{~cm}^{3}$C $\quad 100 \mathrm{~cm}^{3}$
\square D $500 \mathrm{~cm}^{3}$

16 Which of the following gas samples occupies the greatest volume at the same temperature and pressure?
[Relative atomic masses: $\mathrm{H}=1 ; \mathrm{C}=12 ; \mathrm{O}=16 ; \mathrm{F}=19 ; \mathrm{Ne}=20$]A 1 gram of ethaneB 1 gram of oxygenC 1 gram of fluorineD 1 gram of neon

(Total for Question = 1 mark)

17 Which of the following processes has the highest atom economy?A Making poly(ethene) from ethene.
B Making ethene from eicosane, $\mathrm{C}_{20} \mathrm{H}_{42}$.
C Making chloromethane from methane.
\square D Making magnesium chloride from magnesium and hydrochloric acid.
(Total for Question = 1 mark)

18 How many molecules are present in 16 g of oxygen gas, $\mathrm{O}_{2}(\mathrm{~g})$?
[Avogadro constant $=6 \times 10^{23} \mathrm{~mol}^{-1}$]A $96 \quad 23$B $12 \times{ }^{23}$C 6×10^{23}D $3 \times$ 23

19 Nickel(II) sulfate is prepared by adding an excess of nickel(II) carbonate to 0.010 mol of dilute sulfuric acid.

$$
\mathrm{NiCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{NiSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Solid nickel(II) sulfate crystals are produced with a 20% yield. How many moles of nickel(II) sulfate crystals are obtained?A 0.001B 0.002
\square C 0.010D 0.050
(Total for Question = 1 mark)

20 Calculate the volume of dilute hydrochloric acid, concentration $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$, needed to neutralize $20 \mathrm{~cm}^{3}$ of aqueous calcium hydroxide, concentration $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$.

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A $\quad 10 \mathrm{~cm}^{3}$B $20 \mathrm{~cm}^{3}$C $40 \mathrm{~cm}^{3}$D $80 \mathrm{~cm}^{3}$

21 The concentration of blood glucose is usually given in millimoles per dm^{3} or $\mathrm{mmol} \mathrm{dm}{ }^{3}$. A reading of $5.0 \mathrm{mmol} \mathrm{dm}{ }^{3}$ is within the normal range. Glucose has a molar mass of $180 \mathrm{~g} \mathrm{~mol}^{1}$. What mass of glucose dissolved in $1 \mathrm{dm}^{3}$ of blood would give this normal reading?A 0.090 gB $\quad 0.18 \mathrm{~g}$C 0.90 gD 9.0 g
(Total for Question 1 mark)

22 Oxygen can be prepared using several different reactions. Which of those given below has the highest atom economy by mass?

A $\mathrm{NaNO}_{3} \rightarrow \mathrm{NaNO}_{2}+1 / 2 \mathrm{O}_{2}$B $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2}$C $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+1 / 2 \mathrm{O}_{2}$D $\mathrm{PbO}_{2} \rightarrow \mathrm{PbO}+1 / 2 \mathrm{O}_{2}$

23 During a titration, when the solution in a pipette is transferred to a conical flask, a small amount of liquid remains in the tip of the pipette. This situation should be dealt with byA leaving the liquid in the pipette which is calibrated to allow for it.B slightly over-filling the pipette to compensate for the additional volume.C carefully blowing the liquid out of the pipette to ensure that it is empty.D repeating the titration.
(Total for Question 1 mark)

24 The tolerance of a $25 \mathrm{~cm}^{3}$ pipette is $\pm 0.06 \mathrm{~cm}^{3}$. The percentage error in the measurement of $25 \mathrm{~cm}^{3}$ using this pipette is

- $\pm 0.06 \%$

B B $\pm 0.12 \%$

- $\pm 0.24 \%$

D $\pm 0.48 \%$
(Total for Question 1 mark)

25 A series of titrations is carried out using the same conical flask. Before carrying out each titration, the conical flask must be

A rinsed with ethanol.B rinsed with distilled or deionised water.C rinsed with the solution that it will contain.D dried to remove all traces of liquid.

26 The Avogadro constant is $6.0 \times 10^{23} \mathrm{~mol}^{1}$. Therefore the number of atoms in 1 mol of carbon dioxide isA $\quad 2.0 \times 10^{23}$B $\quad 6.0 \times 10^{23}$C $\quad 1.2 \times 10^{24}$
\square D $\quad 1.8 \times 10^{24}$
(Total for Question 1 mark)

27 The equation for the complete combustion of octane is

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

(a) The mass of 10 mol of octane isA 0.66 kgB $\quad 1.14 \mathrm{~kg}$
C $\quad 2.10 \mathrm{~kg}$
D 2.28 kg
(b) The volume of 1 mol of any gas (measured at room temperature and pressure) is $24 \mathrm{dm}^{3}$. Hence the volume of oxygen (measured at room temperature and pressure) required for the complete combustion of 10 mol of octane isA $240 \mathrm{dm}^{3}$B $300 \mathrm{dm}^{3}$C $3000 \mathrm{dm}^{3}$D $6000 \mathrm{dm}^{3}$

28 In 2006, the concentration of carbon dioxide in the atmosphere was 382 ppm . This is equivalent toA 0.00382%
B 0.0382%C 0.382%
D 3.82%
(Total for Question 1 mark)

29 Consider the reaction scheme below and calculate the mass of aspirin you would expect to form if you started with 47 g of phenol.

phenol, $M_{\mathrm{r}} \quad 94$
aspirin, $M_{\mathrm{r}} \quad 180$A $\quad 31.96 \mathrm{~g}$B $\quad 61.20 \mathrm{~g}$
C $\quad 74.25 \mathrm{~g}$
D $\quad 90.00 \mathrm{~g}$

30 The human body contains around 0.025 g of iodine molecules, I_{2}. W hich of the following shows the number of iodine atoms in 0.025 g of I_{2} ?

The Avogadro constant is $6.02 \times 10^{23} \mathrm{~mol}^{-1}$.
$\square \quad$ A $\quad \frac{0.025}{126.9} \times 6.02 \times 10^{23}$
$\square \quad$ B $\quad \frac{0.025}{253.8} \times 6.02 \times 10^{23}$
$\square \quad$ C $\quad \frac{253.8}{0.025} \times 6.02 \times 10^{23}$
D $\frac{126.9}{0.025} \times 6.02 \times 10^{23}$
$3120 \mathrm{~cm}^{3}$ of sulfuric acid, concentration $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$, was neutralized in a titration with barium hydroxide, concentration $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$. The equation for the reaction is

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

(a) The volume of barium hydroxide required was
$\square \quad$ A $\quad 10 \mathrm{~cm}^{3}$B $20 \mathrm{~cm}^{3}$C $25 \mathrm{~cm}^{3}$D $40 \mathrm{~cm}^{3}$
(b) During the titration, the barium hydroxide was added until it was present in excess.

The electrical conductivity of the titration mixture
\square A increased steadily.B decreased steadily.C increased and then decreased.D decreased and then increased.
(Total for Question = 2 marks)

32 W hy does phenolphthalein, which is colourless in acidic solutions, turn pink in alkaline solutions?

- A It is oxidized to a pink compound by hydroxide ions.
- B It forms a pink anion by loss of H^{+}ions.
\square C It forms a pink anion by gain of H^{+}ions.D It forms a pink cation by gain of H^{+}ions.

