

Question Number	Correct Answer	Rejec t	Mark
1 (b)	[FI RST, CHECK THE FINAL ANSWER IF ANSWER = 3.1 (tonnes), award 3 marks] EI THER 1 tonne $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}$: $180 / 116$ tonnes $\begin{equation*} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{H}\right) \tag{1} \end{equation*}$ 2.5 tonnes $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}:(180 / 116) \times 2.5$ (tonnes) $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{H}\right)$ at 100% yield ($=3.879$ tonnes) $\text { So actual yield }=(180 / 116) \times 2.5 \times 79 / 100$ $\begin{equation*} \text { (3.06) = } 3.1 \text { (tonnes) } \tag{1} \end{equation*}$ OR $\begin{align*} \text { Moles } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} & \left(=2.5 \times 10^{6} \div 116\right) \\ & =21551.7(\mathrm{~mol}) \tag{1} \end{align*}$ Moles $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}$ (79\% yield) $\begin{align*} (& =21551.7 \times 0.79) \\ & =17025.8(\mathrm{~mol}) \tag{1} \end{align*}$ $\begin{align*} \text { Mass } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} & (=17025.8 \times 180 \\ & =3064644 \mathrm{~g} \\ & =3.06 \text { tonnes) } \\ & =3.1 \text { (tonnes) to } \mathbf{2 S F} \tag{1} \end{align*}$ Correct answer TO 2 SF, no working (3) Can work in g (instead of tonnes) until final answer So final answer of 3.06 (tonnes) scores M1 and M2 only Award only (1) mark for 3.07 (tonnes) without working	g	3

Question Number	Correct Answer	Reject	Mark
1 (c)	Esterification / acylation / ethanoylation ALLOW 'acetylation' OR '(nucleophilic) addition-elimination' BOTH words (addition and elimination) are needed for this option IGNORE 'Condensation’ $\mathrm{CH}_{3} \mathrm{COCl} /$ ethanoyl chloride OR $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} /$ ethanoic anhydride ALLOW $\mathrm{CH}_{3} \mathrm{COOH} /$ ethanoic acid (in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$) Correct displayed / skeletal formulae IGNORE JUST 'acid anhydride' / 'acid chloride'		2

Question Number	Acceptable Answers	Reject	Mark
2(a)	$\mathbf{1}^{\text {st }}$ Mark $\mathrm{Mol} \mathrm{CuO}=(5.60 / 79.5)=0.07044 / 0.0704$ / 0.070 / 0.07 $2^{\text {nd }}$ Mark Mol of nitric acid $=(50 \times 2.50 / 1000)=$ 0.125 $3^{\text {rd }}$ Mark Reacting ratio $=2: 1$ and nitric acid less than double moles of copper oxide/ Reacting ratio $=2: 1$ and copper oxide more than half of moles of nitric acid OR moles acid needed to react with all CuO $=(2 \times 0.070=) 0.140$ which is more than 0.125 OR 0.125 mol nitric acid can only react with 0.0625 mol CuO		3

Question Number	Acceptable Answers	Reject	Mark
2(b)	$1^{\text {st }}$ Mark Moles product $=0.5 \times 0.125=0.0625$ (1) Allow TE from moles HNO_{3} $\mathbf{2}^{\text {nd }}$ Mark Theoretical yield $=(0.0625 \times 295.6=)$ 18.475 g Allow ECF on multiplying moles product by 295.6 $3^{\text {rd }}$ Mark $\begin{equation*} \% \text { yield }=(12.52 / 18.475 \times 100)=67.767 / \tag{1} \end{equation*}$ 67.8 / 68 Alternative route for $\mathbf{2}^{\text {nd }}$ and $3^{\text {rd }}$ Marks $\begin{equation*} \text { mol product }=(12.52 / 295.6)=0.04235 \tag{1} \end{equation*}$ $\begin{equation*} \% \text { yield }=(0.04235 / 0.0625 \times 100=67.767 \tag{1} \end{equation*}$ / 67.8/ 68 TE from (a) If moles of product taken as 0.125 , final answer $=33.88 \%$ which scores (2) TE for calculation based on moles of copper(II) oxide which gives an answer between 60.128% and 60.506% $\max (2)$	4.24\% scores (0) overall	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c)}$	Some product remains in solution/ some product does not crystallize	Incomplete reaction Just experimental error	1
	Allow loss of material on transferring, if explained, such as Crystals remain in / on filter paper 'Spitting' (of solution on heating) IGNORE References to impure reactants	'solution evaporates'	

Question Number	Acceptable Answers	Reject	Mark
2(d)(i)	Covalent bond: (shared pair of electrons using) one electron from each atom (1)		2
Dative covalent bond: (shared pair of electrons using) two electrons from same atom	(1)		

Question Number	Acceptable Answers	Reject	Mark
2(d) (ii)	Double bond between N and one oxygen atom Single bond between N and O* Dative single bond between N and one O atom Max 2 if any lone pair electrons are missing from any of the three oxygen atoms.		3

Question	Acceptable Answers				Reject	Mark
	In (a) any units given must be correct. Penalise incorrect units once only. I gnore SF except 1 SF in (i), (iii) and (iv). Penalise once only					
$\begin{aligned} & 3 \\ & (a)(i) \end{aligned}$	Volume Added/cm ${ }^{3}$	25(.00)	24.6(0)	24.5(0)		1
	Allow 24.6 (cm		$\left.m^{3}\right)$		$\begin{aligned} & 24.70 \\ & 24.60 \end{aligned}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i i)}$	$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ Ignore state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iii)	Number of moles of NaOH $\begin{array}{cl} =\left(\frac{24.55}{1000} \times 2.5\right) & =6.1375 \times 10^{-2}=0.061375(\mathrm{~mol}) \\ & \text { OR } 6.14 \times 10^{-2}=0.0614 \\ & \text { OR } 6.1 \times 10^{-2}=0.061 \end{array}$ Allow TE from 20(a)(i)	$\begin{array}{\|l} 0.0613 \\ 0.06 \end{array}$	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(iv)	$6.1375 \times 10^{-2} / 0.061375 / 6.14 \times 10^{-2} / 0.0614 / 0.061(\mathrm{~mol})$ Allow TE $=$ answer to (a)(iii)		1

Question Number	Acceptable Answers		Reject	Mark
$\begin{aligned} & 3 \\ & (a)(v) \end{aligned}$	Multiply by 4 and by 36.5 Using 6.1375×10^{-2} gives $8.96075=8.96(\mathrm{~g})$ OR Using 6.14×10^{-2} gives $8.9644=8.96(\mathrm{~g})$ OR Using 6.1×10^{-2} gives $8.906=8.91(\mathrm{~g})$ Answer to 3 SF Correct answer without working score (2) Allow TE from (a)(iv) ALLOW one mark for correct answer to 3SF where the multiplication by 4 has been omitted, e.g. $\left(6.1375 \times 10^{-2} \times 36.5=2.2401875=2.24(\mathrm{~g})\right.$	(1) (1) (1)		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) (v i) ~}$	The statement is valid as 8.96 ~9/very close	Just 'not valid / valid'	1
	Allow appropriate comment from answer to (a)(v) e.g 2.24 is not valid because it is too far away from 9g.		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ a (v i i) ~}$	(Too) corrosive Damages eyes/burns (skin)/caustic	Ignore Dangerous/Strong/Too concentrated	'Harmful/Irritant/Toxic/Hazardous'

Question Number	Acceptable Answers	Reject	Mark
20 (b)	$H^{x} \bigcirc_{0}^{0} x^{x} C_{x x}^{x x} l_{x}^{x}$ Allow all dots or all crosses ALLOW ionic dot and cross Or dative covalent bond from chlorine		1

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 0 (c)}$	$\mathrm{HCl}+\mathrm{HOCl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$ Ignore state symbols even if incorrect Chlorine is toxic/poisonous Allow fumes are toxic Ignore references to smell or colour	(1)	Just 'Harmful/ irritant/dangerous/ hazardous'	

Question Number	Acceptable Answers	Reject	Mark
3 (d)(i)	$\begin{array}{cccc} \hline(2 \mathrm{NaOH} & \left.+\underset{0}{\mathrm{Cl}_{2}} \rightarrow \underset{-1}{\mathrm{NaCl}}+\underset{+1}{\mathrm{NaClO}}+\underset{\mathrm{H}_{2} \mathrm{O}}{ }\right) \\ & \end{array}$ All oxidation numbers correct Type: Disproportionation Allow phonetic spellings Allow redox and disproportionation Second mark consequential on the first except if (i) all the oxidation numbers are zero (ii) the plus sign is missing, (iii) irst two oxidation numbers are correct and the third one is positive If all the elemental oxidation numbers are given correctly then both marks are available	Just redox	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (d) (i i) ~}$	Heat/ increase temperature ALLOW (more) concentrated NaOH	Just 'warm' / 'excess NaOH' Acid	1

Question Number	Acceptable Answers	Reject	Mark
3 (d)(iii)	$\begin{align*} & 3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR}_{3}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O} \end{align*}$ Formula of $\mathrm{NaClO}_{3} / \mathrm{ClO}_{3}^{-}$ Rest of equation correct Ignore state symbols even if incorrect		2

Question Number	Acceptable Answers	Reject	Mark
4 (a)	 The correct number of dots and crosses around both chromium atoms All the oxygen atoms to have the correct number of bonds and the lone pairs The extra 2 electrons from the potassium on the oxygen(s)	Both * on the same oxygen	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (i)}$	$(\mathrm{n}=14.71 \div 294.2=) 0.0500(\mathrm{~mol}) \quad$ (1)		2
	$(\mathrm{c}=0.0500 \div 0.25=) 0.200\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Allow TE on incorrect M_{r} value Allow use of 294 Correct answer without working scores (2) Allow 1SF If units are given then they must be correct		

Question Number	Acceptable Answers	Reject	Mark
4 (b) (ii)	$\begin{align*} & (0.00250 \times 6=) 0.0150(\mathrm{~mol}) \\ & (0.0150 \times 166=2.49(\mathrm{~g})) \tag{1}\\ & 2.6 \leq \text { value } \leq 5.0(\mathrm{~g}) \tag{1} \end{align*}$ TE for suitable mass to use on incorrect calculation Suitable mass must be between 0.10 g more than the calculated value but less than or equal to double the calculated value Allow 1 SF for the suitable mass		2

Question Number	Acceptable Answers	Reject	Mark
4 (b)(iv)	Percentage error large with a small mass/ Mass is only to 1 SF	Just 'mass is not accurate'	2
	No repeats possible	Reference to concentration.	

Question Number	Acceptable Answers	Reject	Mark
4 (c)(i)	$\mathrm{Cl}^{-} \rightarrow 1 / 2 \mathrm{Cl}_{2}+\mathrm{e}^{(-)}$ OR $\mathrm{Cl}^{-}-\mathrm{e}^{(-)} \rightarrow 1 / 2 \mathrm{Cl}_{2}$ Ignore state symbols even if wrong Allow multiples Allow $2 \mathrm{HCl} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}+2 \mathrm{H}^{+}$	Reverse equation Iodide equation	1

Question Number	Acceptable Answers	Reject	Mark
4 (c)(ii)	(Gas X) Ammonia / NH_{3} Allow ammonia (solution) / $\mathrm{NH}_{3}(\mathrm{aq})$ (Observation) White smoke / solid ALLOW Dense white fumes/white cloud	(1)	
The observation mark is consequential on the Gas X being correct or a near-miss If name and formula given then both must be correct	Misty fumes/ White gas/ White ppt/ Steamy fumes	2	

